Pandas - Find and index rows that match row sequence pattern

前端 未结 5 1619
半阙折子戏
半阙折子戏 2020-11-27 21:26

I would like to find a pattern in a dataframe in a categorical variable going down rows. I can see how to use Series.shift() to look up / down and using boolean logic to fi

5条回答
  •  南笙
    南笙 (楼主)
    2020-11-27 22:15

    I think you have 2 ways - simplier and slowier solution or faster complicated.

    • use Rolling.apply and test pattern
    • replace 0s to NaNs by mask
    • use bfill with limit (same as fillna with method='bfill') for repeat 1
    • then fillna NaNs to 0
    • last cast to bool by astype

    pat = np.asarray([1, 2, 2, 0])
    N = len(pat)
    
    
    df['rm0'] = (df['row_pat'].rolling(window=N , min_periods=N)
                              .apply(lambda x: (x==pat).all())
                              .mask(lambda x: x == 0) 
                              .bfill(limit=N-1)
                              .fillna(0)
                              .astype(bool)
                 )
    

    If is important performance, use strides, solution from link was modify:

    • use rolling window approach
    • compare with pattaern and return Trues for match by all
    • get indices of first occurencies by np.mgrid and indexing
    • create all indices with list comprehension
    • compare by numpy.in1d and create new column

    def rolling_window(a, window):
        shape = a.shape[:-1] + (a.shape[-1] - window + 1, window)
        strides = a.strides + (a.strides[-1],)
        c = np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)
        return c
    
    arr = df['row_pat'].values
    b = np.all(rolling_window(arr, N) == pat, axis=1)
    c = np.mgrid[0:len(b)][b]
    
    d = [i  for x in c for i in range(x, x+N)]
    df['rm2'] = np.in1d(np.arange(len(arr)), d)
    

    Another solution, thanks @divakar:

    arr = df['row_pat'].values
    b = np.all(rolling_window(arr, N) == pat, axis=1)
    
    m = (rolling_window(arr, len(pat)) == pat).all(1)
    m_ext = np.r_[m,np.zeros(len(arr) - len(m), dtype=bool)]
    df['rm1'] = binary_dilation(m_ext, structure=[1]*N, origin=-(N//2))
    

    Timings:

    np.random.seed(456) 
    
    import pandas as pd
    from numpy.random import choice, randn
    from scipy.ndimage.morphology import binary_dilation
    import string
    
    # df constructor
    n_rows = 100000
    df = pd.DataFrame({'date_time': pd.date_range('2/9/2018', periods=n_rows, freq='H'),
                       'group_var': choice(list(string.ascii_uppercase), n_rows),
                       'row_pat': choice([0, 1, 2, 3], n_rows),
                       'values': randn(n_rows)})
    
    # sorting 
    df.sort_values(by=['group_var', 'date_time'], inplace=True)
    

    def rolling_window(a, window):
        shape = a.shape[:-1] + (a.shape[-1] - window + 1, window)
        strides = a.strides + (a.strides[-1],)
        c = np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)
        return c
    
    
    arr = df['row_pat'].values
    b = np.all(rolling_window(arr, N) == pat, axis=1)
    
    m = (rolling_window(arr, len(pat)) == pat).all(1)
    m_ext = np.r_[m,np.zeros(len(arr) - len(m), dtype=bool)]
    df['rm1'] = binary_dilation(m_ext, structure=[1]*N, origin=-(N//2))
    
    arr = df['row_pat'].values
    b = np.all(rolling_window(arr, N) == pat, axis=1)
    c = np.mgrid[0:len(b)][b]
    
    d = [i  for x in c for i in range(x, x+N)]
    df['rm2'] = np.in1d(np.arange(len(arr)), d)
    

    print (df.iloc[460:480])
    
                    date_time group_var  row_pat    values    rm0    rm1    rm2
    12045 2019-06-25 21:00:00         A        3 -0.081152  False  False  False
    12094 2019-06-27 22:00:00         A        1 -0.818167  False  False  False
    12125 2019-06-29 05:00:00         A        0 -0.051088  False  False  False
    12143 2019-06-29 23:00:00         A        0 -0.937589  False  False  False
    12145 2019-06-30 01:00:00         A        3  0.298460  False  False  False
    12158 2019-06-30 14:00:00         A        1  0.647161  False  False  False
    12164 2019-06-30 20:00:00         A        3 -0.735538  False  False  False
    12210 2019-07-02 18:00:00         A        1 -0.881740  False  False  False
    12341 2019-07-08 05:00:00         A        3  0.525652  False  False  False
    12343 2019-07-08 07:00:00         A        1  0.311598  False  False  False
    12358 2019-07-08 22:00:00         A        1 -0.710150   True   True   True
    12360 2019-07-09 00:00:00         A        2 -0.752216   True   True   True
    12400 2019-07-10 16:00:00         A        2 -0.205122   True   True   True
    12404 2019-07-10 20:00:00         A        0  1.342591   True   True   True
    12413 2019-07-11 05:00:00         A        1  1.707748  False  False  False
    12506 2019-07-15 02:00:00         A        2  0.319227  False  False  False
    12527 2019-07-15 23:00:00         A        3  2.130917  False  False  False
    12600 2019-07-19 00:00:00         A        1 -1.314070  False  False  False
    12604 2019-07-19 04:00:00         A        0  0.869059  False  False  False
    12613 2019-07-19 13:00:00         A        2  1.342101  False  False  False
    

    In [225]: %%timeit
         ...: df['rm0'] = (df['row_pat'].rolling(window=N , min_periods=N)
         ...:                           .apply(lambda x: (x==pat).all())
         ...:                           .mask(lambda x: x == 0) 
         ...:                           .bfill(limit=N-1)
         ...:                           .fillna(0)
         ...:                           .astype(bool)
         ...:              )
         ...: 
    1 loop, best of 3: 356 ms per loop
    
    In [226]: %%timeit
         ...: arr = df['row_pat'].values
         ...: b = np.all(rolling_window(arr, N) == pat, axis=1)
         ...: c = np.mgrid[0:len(b)][b]
         ...: d = [i  for x in c for i in range(x, x+N)]
         ...: df['rm2'] = np.in1d(np.arange(len(arr)), d)
         ...: 
    100 loops, best of 3: 7.63 ms per loop
    
    In [227]: %%timeit
         ...: arr = df['row_pat'].values
         ...: b = np.all(rolling_window(arr, N) == pat, axis=1)
         ...: 
         ...: m = (rolling_window(arr, len(pat)) == pat).all(1)
         ...: m_ext = np.r_[m,np.zeros(len(arr) - len(m), dtype=bool)]
         ...: df['rm1'] = binary_dilation(m_ext, structure=[1]*N, origin=-(N//2))
         ...: 
    100 loops, best of 3: 7.25 ms per loop
    

提交回复
热议问题