I tried a simple example like:
data = sqlContext.read.format(\"csv\").option(\"header\", \"true\").option(\"inferSchema\", \"true\").load(\"/databricks-datasets/
Because header contains spaces or tabs,remove spaces or tabs and try
1) My example script
from pyspark.sql import SparkSession
spark = SparkSession \
.builder \
.appName("Python Spark SQL basic example") \
.config("spark.some.config.option", "some-value") \
.getOrCreate()
df=spark.read.csv(r'test.csv',header=True,sep='^')
print("#################################################################")
print df.printSchema()
df.createOrReplaceTempView("test")
re=spark.sql("select max_seq from test")
print(re.show())
print("################################################################")
2) Input file,here 'max_seq ' contains space so we are getting bellow exception
Trx_ID^max_seq ^Trx_Type^Trx_Record_Type^Trx_Date
Traceback (most recent call last):
File "D:/spark-2.1.0-bin-hadoop2.7/bin/test.py", line 14, in
re=spark.sql("select max_seq from test")
File "D:\spark-2.1.0-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\sql\session.py", line 541, in sql
File "D:\spark-2.1.0-bin-hadoop2.7\python\lib\py4j-0.10.4-src.zip\py4j\java_gateway.py", line 1133, in __call__
File "D:\spark-2.1.0-bin-hadoop2.7\python\lib\pyspark.zip\pyspark\sql\utils.py", line 69, in deco
pyspark.sql.utils.AnalysisException: u"cannot resolve '`max_seq`' given input columns: [Venue_City_Name, Trx_Type, Trx_Booking_Status_Committed, Payment_Reference1, Trx_Date, max_seq , Event_ItemVariable_Name, Amount_CurrentPrice, cinema_screen_count, Payment_IsMyPayment, r
2) Remove space after 'max_seq' column then it will work fine
Trx_ID^max_seq^Trx_Type^Trx_Record_Type^Trx_Date
17/03/20 12:16:25 INFO DAGScheduler: Job 3 finished: showString at :0, took 0.047602 s
17/03/20 12:16:25 INFO CodeGenerator: Code generated in 8.494073 ms
max_seq
10
23
22
22
only showing top 20 rows
None
##############################################################