I\'d like to remove the lines in this data frame that:
a) contain NAs across all columns. Below is my example data frame.
One approach that's both general and yields fairly-readable code is to use the filter() function and the across() helper functions from the {dplyr} package.
library(dplyr)
vars_to_check <- c("rnor", "cfam")
# Filter a specific list of columns to keep only non-missing entries
df %>%
filter(across(one_of(vars_to_check),
~ !is.na(.x)))
# Filter all the columns to exclude NA
df %>%
filter(across(everything(),
~ !is.na(.)))
# Filter only numeric columns
df %>%
filter(across(where(is.numeric),
~ !is.na(.)))
Similarly, there are also the variant functions in the dplyr package (filter_all, filter_at, filter_if) which accomplish the same thing:
library(dplyr)
vars_to_check <- c("rnor", "cfam")
# Filter a specific list of columns to keep only non-missing entries
df %>%
filter_at(.vars = vars(one_of(vars_to_check)),
~ !is.na(.))
# Filter all the columns to exclude NA
df %>%
filter_all(~ !is.na(.))
# Filter only numeric columns
df %>%
filter_if(is.numeric,
~ !is.na(.))