I have a multiindexed pandas.Dataframe which is something like this:
BAZ PAL
Foo Bar
124 1 A B
2 C D
134 1 E
You need to unstack your existing index level Foo, stack your desired column 'Coo', and then rearrange the index levels. After swapping your index levels, you probably want to sort it. As a final touch, you may want to drop the column name of all the values (val).
df = (pd.DataFrame({'Foo': [124, 124, 134, 134] * 2,
'Bar': [1, 2, 1, 2] * 2,
'Coo': ['BAZ'] * 4 + ['PAL'] * 4,
'val': list('ACEGBDFH')})
.set_index(['Foo', 'Bar', 'Coo'])
.unstack('Coo'))
>>> df
val
Coo BAZ PAL
Foo Bar
124 1 A B
2 C D
134 1 E F
2 G H
df = df.unstack('Foo').stack('Coo')
df.index = df.index.swaplevel(0, 1)
>>> df
val
Foo 124 134
Coo Bar
BAZ 1 A E
PAL 1 B F
BAZ 2 C G
PAL 2 D H
df.sort_index(inplace=True)
>>> df
val
Foo 124 134
Coo Bar
BAZ 1 A E
2 C G
PAL 1 B F
2 D H
df.columns = df.columns.droplevel()
>>> df
Foo 124 134
Coo Bar
BAZ 1 A E
2 C G
PAL 1 B F
2 D H