For example, these are valid math expressions:
a * b + c
-a * (b / 1.50)
(apple + (-0.5)) * (boy - 1)
And these are invalid math expression
This is tricky with one single regular expression, but quite easy using mixed regexp/procedural approach. The idea is to construct a regexp for the simple expression (without parenthesis) and then repeatedly replace ( simple-expression ) with some atomic string (e.g. identifier). If the final reduced expression matches the same `simple' pattern, the original expression is considered valid.
Illustration (in php).
function check_syntax($str) {
// define the grammar
$number = "\d+(\.\d+)?";
$ident = "[a-z]\w*";
$atom = "[+-]?($number|$ident)";
$op = "[+*/-]";
$sexpr = "$atom($op$atom)*"; // simple expression
// step1. remove whitespace
$str = preg_replace('~\s+~', '', $str);
// step2. repeatedly replace parenthetic expressions with 'x'
$par = "~\($sexpr\)~";
while(preg_match($par, $str))
$str = preg_replace($par, 'x', $str);
// step3. no more parens, the string must be simple expression
return preg_match("~^$sexpr$~", $str);
}
$tests = array(
"a * b + c",
"-a * (b / 1.50)",
"(apple + (-0.5)) * (boy - 1)",
"--a *+ b @ 1.5.0",
"-a * b + 1)",
"a) * (b + c) / (d",
);
foreach($tests as $t)
echo $t, "=", check_syntax($t) ? "ok" : "nope", "\n";
The above only validates the syntax, but the same technique can be also used to construct a real parser.