I have a daily time series about number of visitors on the web site. my series start from 01/06/2014 until today 14/10/2015 so I wish to predict n
Here's how I created a time series when I was given some daily observations with quite a few observations missing. @gavin-simpson gave quite a big help. Hopefully this saves someone some grief.
The original data looked something like this:
library(lubridate)
set.seed(42)
minday = as.Date("2001-01-01")
maxday = as.Date("2005-12-31")
dates <- seq(minday, maxday, "days")
dates <- dates[sample(1:length(dates),length(dates)/4)] # create some holes
df <- data.frame(date=sort(dates), val=sin(seq(from=0, to=2*pi, length=length(dates))))
To create a time-series with this data I created a 'dummy' dataframe with one row per date and merged that with the existing dataframe:
df <- merge(df, data.frame(date=seq(minday, maxday, "days")), all=T)
This dataframe can be cast into a timeseries. Missing dates are NA.
nts <- ts(df$val, frequency=365, start=c(year(minday), as.numeric(format(minday, "%j"))))
plot(nts)