I have read numerous posts along the lines of multidimensional to single dimension, multidimensional database, and so on, but none of the answers helped. I did
The goal is to retrieve an element with PHP by name and all its descendants.
If that is all you need, you can use a LIKE search
SELECT *
FROM Table1
WHERE CELL LIKE 'AEE%';
With an index beginning with CELL this is a range check, which is fast.
If your data doesn't look like that, you can create a path column which looks like a directory path and contains all nodes "on the way/path" from root to the element.
| id | CELL | parent_id | path |
|====|======|===========|==========|
| 1 | A | NULL | 1/ |
| 2 | AA | 1 | 1/2/ |
| 3 | AAA | 2 | 1/2/3/ |
| 4 | AAC | 2 | 1/2/4/ |
| 5 | AB | 1 | 1/5/ |
| 6 | AE | 1 | 1/6/ |
| 7 | AEA | 6 | 1/6/7/ |
| 8 | AEE | 6 | 1/6/8/ |
| 9 | AEEB | 8 | 1/6/8/9/ |
To retrieve all descendants of 'AE' (including itself) your query would be
SELECT *
FROM tree t
WHERE path LIKE '1/6/%';
or (MySQL specific concatenation)
SELECT t.*
FROM tree t
CROSS JOIN tree r -- root
WHERE r.CELL = 'AE'
AND t.path LIKE CONCAT(r.path, '%');
Result:
| id | CELL | parent_id | path |
|====|======|===========|==========|
| 6 | AE | 1 | 1/6/ |
| 7 | AEA | 6 | 1/6/7/ |
| 8 | AEE | 6 | 1/6/8/ |
| 9 | AEEB | 8 | 1/6/8/9/ |
Demo
I have created 100K rows of fake data on MariaDB with the sequence plugin using the following script:
drop table if exists tree;
CREATE TABLE tree (
`id` int primary key,
`CELL` varchar(50),
`parent_id` int,
`path` varchar(255),
unique index (`CELL`),
unique index (`path`)
);
DROP TRIGGER IF EXISTS `tree_after_insert`;
DELIMITER //
CREATE TRIGGER `tree_after_insert` BEFORE INSERT ON `tree` FOR EACH ROW BEGIN
if new.id = 1 then
set new.path := '1/';
else
set new.path := concat((
select path from tree where id = new.parent_id
), new.id, '/');
end if;
END//
DELIMITER ;
insert into tree
select seq as id
, conv(seq, 10, 36) as CELL
, case
when seq = 1 then null
else floor(rand(1) * (seq-1)) + 1
end as parent_id
, null as path
from seq_1_to_100000
;
DROP TRIGGER IF EXISTS `tree_after_insert`;
-- runtime ~ 4 sec.
Count all elements under the root:
SELECT count(*)
FROM tree t
CROSS JOIN tree r -- root
WHERE r.CELL = '1'
AND t.path LIKE CONCAT(r.path, '%');
-- result: 100000
-- runtime: ~ 30 ms
Get subtree elements under a specific node:
SELECT t.*
FROM tree t
CROSS JOIN tree r -- root
WHERE r.CELL = '3B0'
AND t.path LIKE CONCAT(r.path, '%');
-- runtime: ~ 30 ms
Result:
| id | CELL | parent_id | path |
|=======|======|===========|=====================================|
| 4284 | 3B0 | 614 | 1/4/11/14/614/4284/ |
| 6560 | 528 | 4284 | 1/4/11/14/614/4284/6560/ |
| 8054 | 67Q | 6560 | 1/4/11/14/614/4284/6560/8054/ |
| 14358 | B2U | 6560 | 1/4/11/14/614/4284/6560/14358/ |
| 51911 | 141Z | 4284 | 1/4/11/14/614/4284/51911/ |
| 55695 | 16Z3 | 4284 | 1/4/11/14/614/4284/55695/ |
| 80172 | 1PV0 | 8054 | 1/4/11/14/614/4284/6560/8054/80172/ |
| 87101 | 1V7H | 51911 | 1/4/11/14/614/4284/51911/87101/ |
This also works for PostgreSQL. Only the string concatenation syntax has to be changed:
SELECT t.*
FROM tree t
CROSS JOIN tree r -- root
WHERE r.CELL = 'AE'
AND t.path LIKE r.path || '%';
Demo: sqlfiddle - rextester
If you look at the test example, you'll see that all paths in the result begin with '1/4/11/14/614/4284/'. That is the path of the subtree root with CELL='3B0'. If the path column is indexed, the engine will find them all efficiently, because the index is sorted by path. It's like you would want to find all the words that begin with 'pol' in a dictionary with 100K words. You wouldn't need to read the entire dictionary.