Every allocator class must have an interface similar to the following:
template
class allocator
{
...
template
s
But why is this necessary?
What if your allocator class has more than one template argument?
That's pretty much it in terms of why it is generally discouraged to use template template arguments, in favor of using normal template arguments, even if it means a bit of redundancy at the instantiation site. In many cases (however, probably not for allocators), that argument might not always be a class template (e.g., a normal class with template member functions).
You might find it convenient (within the implementation of the container class) to use a template template parameter just because it simplifies some of the internal syntax. However, if the user has a multi-argument class template as an allocator he wants to use, but you require the user to provide an allocator which is a single-argument class template, you will in effect force him to create a wrapper for almost any new context in which he must use that allocator. This not only unscalable, it can also become very inconvenient to do. And, at this point, that solution is far from being the "elegant and less redundant" solution you originally thought it would be. Say you had an allocator with two arguments, which of the following is the easiest for the user?
std::vector > v1;
std::vector::template type > v2;
You basically force the user to construct a lot of useless things (wrappers, template aliases, etc.) just to satisfy your implementation's demands. Requiring the author of a custom allocator class to supply a nested rebind template (which is just a trivial template alias) is far easier than all the contortions you require with the alternative approach.