Recurrence relations and recursive functions as well should be solved by starting at f(1). In case 1, T(1) = 1; T(2) = 3; T(4) = 7; T(8) = 15; It's clear that T(n) = 2 * n -1, which in O notation is O(n).
In second case T(1) = 1; T(2) = 2; T(4) = 3; T(16) = 4; T(256) = 5; T(256 * 256) =6; It will take little time to find out that T(n) = log(log(n)) + 1 where log is in base 2. Clearly this is O(log(log(n)) relation.