I just want to ask if my method is correct to convert from little endian to big endian, just to make sure if I understand the difference.
I have a number which is st
Sorry, my answer is a bit too late, but it seems nobody mentioned built-in functions to reverse byte order, which in very important in terms of performance.
Most of the modern processors are little-endian, while all network protocols are big-endian. That is history and more on that you can find on Wikipedia. But that means our processors convert between little- and big-endian millions of times while we browse the Internet.
That is why most architectures have a dedicated processor instructions to facilitate this task. For x86 architectures there is BSWAP instruction, and for ARMs there is REV. This is the most efficient way to reverse byte order.
To avoid assembly in our C code, we can use built-ins instead. For GCC there is __builtin_bswap32() function and for Visual C++ there is _byteswap_ulong(). Those function will generate just one processor instruction on most architectures.
Here is an example:
#include
#include
int main()
{
uint32_t le = 0x12345678;
uint32_t be = __builtin_bswap32(le);
printf("Little-endian: 0x%" PRIx32 "\n", le);
printf("Big-endian: 0x%" PRIx32 "\n", be);
return 0;
}
Here is the output it produces:
Little-endian: 0x12345678
Big-endian: 0x78563412
And here is the disassembly (without optimization, i.e. -O0):
uint32_t be = __builtin_bswap32(le);
0x0000000000400535 <+15>: mov -0x8(%rbp),%eax
0x0000000000400538 <+18>: bswap %eax
0x000000000040053a <+20>: mov %eax,-0x4(%rbp)
There is just one BSWAP instruction indeed.
So, if we do care about the performance, we should use those built-in functions instead of any other method of byte reversing. Just my 2 cents.