I am using SciPy\'s hierarchical agglomerative clustering methods to cluster a m x n matrix of features, but after the clustering is complete, I can\'t seem to figure out how to
You can do something like this (D
=number of dimensions):
# Sum the vectors in each cluster
lens = {} # will contain the lengths for each cluster
centroids = {} # will contain the centroids of each cluster
for idx,clno in enumerate(T):
centroids.setdefault(clno,np.zeros(D))
centroids[clno] += features[idx,:]
lens.setdefault(clno,0)
lens[clno] += 1
# Divide by number of observations in each cluster to get the centroid
for clno in centroids:
centroids[clno] /= float(lens[clno])
This will give you a dictionary with cluster number as the key and the centroid of the specific cluster as the value.