I\'ve been exploring how to optimize my code and ran across pandas
.at
method. Per the documentation
Fast label-based scalar ac
As you asked about the limitations of .at
, here is one thing I recently ran into (using pandas 0.22). Let's use the example from the documentation:
df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]], index=[4, 5, 6], columns=['A', 'B', 'C'])
df2 = df.copy()
A B C
4 0 2 3
5 0 4 1
6 10 20 30
If I now do
df.at[4, 'B'] = 100
the result looks as expected
A B C
4 0 100 3
5 0 4 1
6 10 20 30
However, when I try to do
df.at[4, 'C'] = 10.05
it seems that .at
tries to conserve the datatype (here: int
):
A B C
4 0 100 10
5 0 4 1
6 10 20 30
That seems to be a difference to .loc
:
df2.loc[4, 'C'] = 10.05
yields the desired
A B C
4 0 2 10.05
5 0 4 1.00
6 10 20 30.00
The risky thing in the example above is that it happens silently (the conversion from float
to int
). When one tries the same with strings it will throw an error:
df.at[5, 'A'] = 'a_string'
ValueError: invalid literal for int() with base 10: 'a_string'
It will work, however, if one uses a string on which int()
actually works as noted by @n1k31t4 in the comments, e.g.
df.at[5, 'A'] = '123'
A B C
4 0 2 3
5 123 4 1
6 10 20 30