avoid instanceof in Java

前端 未结 9 2392
清歌不尽
清歌不尽 2021-02-12 20:40

I have been told at some stage at university (and have subsequently read in upteen places) that using instanceof should only be used as a \'last resort\'. With this

9条回答
  •  没有蜡笔的小新
    2021-02-12 20:58

    The reason why instanceof is discouraged is because in OOP we should not examine object's types from outside. Instead, the idiomatic way is to let object themselves act using overriden methods. In your case, one possible solution could be to define boolean setUITweenManager(...) on GameObject and let it return true if setting the manager was possible for a particular object. However if this pattern occurs in many places, the top-level classes can get quite polluted. Therefore sometimes instanceof is "lesser evil".

    The problem with this OPP approach is that each object must "know" all its possible use cases. If you need a new feature that works on your class hierarchy, you have to add it to the classes themselves, you can't have it somewhere separate, like in a different module. This can be solved in a general way using the visitor pattern, as others suggested. The visitor pattern describes the most general way to examine objects, and becomes even more useful when combined with polymorphism.

    Note that other languages (in particular functional languages) use a different principle. Instead of letting objects "know" how they perform every possible action, they declare data types that have no methods on their own. Instead, code that uses them examines how they were constructed using pattern matching on algebraic data types. As far as I know, the closest language to Java that has pattern matching is Scala. There is an interesting paper about how Scala implements pattern matching, which compares several possible approaches: Matching Objects With Patterns. Burak Emir, Martin Odersky, and John Williams.

    Data in object-oriented programming is organized in a hierarchy of classes. The problem of object-oriented pattern matching is how to explore this hierarchy from the outside. This usually involves classifying objects by their run-time type, accessing their members, or determining some other characteristic of a group of objects. In this paper we compare six different pattern matching techniques: object-oriented decomposition, visitors, type-tests/typecasts, typecase, case classes, and extractors. The techniques are compared on nine criteria related to conciseness, maintainability and performance. The paper introduces case classes and extractors as two new pattern-matching methods and shows that their combination works well for all of the established criteria.

    In summary: In OOP you can easily modify data types (like add subclasses), but adding new functions (methods) requires making changes to many classes. With ADT it's easy to add new functions, but modifying data types requires modifying many functions.

提交回复
热议问题