My understanding is that std::mutex lock and unlock have a acquire/release semantics which will prevent instructions between them from being moved outside.
So acquire/re
So acquire/release should disable both compiler and CPU reorder instructions.
By definition anything that prevents CPU reordering by speculative execution prevents compiler reordering. That's the definition of language semantics, even without MT (multi-threading) in the language, so you will be safe from reordering on old compilers that don't support MT.
But these compilers aren't safe for MT for a bunch of reasons, from the lack of thread protection around runtime initialization of static variables to the implicitly modified global variables like errno, etc.
Also, in C/C++, any call to a function that is purely external (that is: not inline, available for inlining at any point), without annotation explaining what it does (like the "pure function" attribute of some popular compiler), must be assumed to do anything that legal C/C++ code can do. No non trivial reordering would be possible (any reordering that is visible is non trivial).
Any correct implementation of locks on systems with multiple units of execution that don't simulate a global order on assembly instructions will require memory barriers and will prevent reordering.
An implementation of locks on a linearly executing CPU, with only one unit of execution (or where all threads are bound on the same unit of execution), might use only volatile variables for synchronisation and that is unsafe as volatile reads resp. writes do not provide any guarantee of acquire resp. release of any other data (contrast Java). Some kind of compiler barrier would be needed, like a strongly external function call, or some asm (""/*nothing*/)
(which is compiler specific and even compiler version specific).