Today I had a discussion with a friend of mine and we debated for a couple of hours about \"compiler optimization\".
I defended the point that sometimes
Aliasing can cause problems with certain optimizations, which is why compilers have an option to disable those optimizations. From Wikipedia:
To enable such optimizations in a predictable manner, the ISO standard for the C programming language (including its newer C99 edition) specifies that it is illegal (with some exceptions) for pointers of different types to reference the same memory location. This rule, known as "strict aliasing", allows impressive increases in performance[citation needed], but has been known to break some otherwise valid code. Several software projects intentionally violate this portion of the C99 standard. For example, Python 2.x did so to implement reference counting,[1] and required changes to the basic object structs in Python 3 to enable this optimisation. The Linux kernel does this because strict aliasing causes problems with optimization of inlined code.[2] In such cases, when compiled with gcc, the option -fno-strict-aliasing is invoked to prevent unwanted or invalid optimizations that could produce incorrect code.