I have trained a ConvNet model with TensorFlow, and I want to get a particular weight in layer. For example in torch7 I would simply access model.modules[2].weights
2.0 Compatible Answer: If we build a Model using Keras Sequential API, we can get the Weights of the Model using the code mentioned below:
!pip install tensorflow==2.1
from tf.keras import Sequential
model = Sequential()
model.add(Conv2D(filters=conv1_fmaps, kernel_size=conv1_ksize,
strides=conv1_stride, padding=conv1_pad,
activation=tf.nn.relu, input_shape=(height, width, channels),
data_format='channels_last'))
model.add(MaxPool2D(pool_size = (2,2), strides= (2,2), padding="VALID"))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(units = 32, activation = 'relu'))
model.add(Dense(units = 10, activation = 'softmax'))
model.summary()
print(model.trainable_variables)
The Last Statement, print(model.trainable_variables), will return the Weights of the Model as shown below:
[,
, , , , ]