How to covert a DataFrame column containing strings and NaN values to floats. And there is another column whose values are strings and floats; how to convert th
Here is an example
GHI Temp Power Day_Type
2016-03-15 06:00:00 -7.99999952505459e-7 18.3 0 NaN
2016-03-15 06:01:00 -7.99999952505459e-7 18.2 0 NaN
2016-03-15 06:02:00 -7.99999952505459e-7 18.3 0 NaN
2016-03-15 06:03:00 -7.99999952505459e-7 18.3 0 NaN
2016-03-15 06:04:00 -7.99999952505459e-7 18.3 0 NaN
but if this is all string values...as was in my case... Convert the desired columns to floats:
df_inv_29['GHI'] = df_inv_29.GHI.astype(float)
df_inv_29['Temp'] = df_inv_29.Temp.astype(float)
df_inv_29['Power'] = df_inv_29.Power.astype(float)
Your dataframe will now have float values :-)