As far as I can tell, both of the following code snippets will serve the same purpose. Why have finally blocks at all?
Code A:
try { /*
Still scrolling down? Here you go!
This question gave me tough time back a while.
try
{
int a=1;
int b=0;
int c=a/b;
}
catch(Exception ex)
{
console.writeline(ex.Message);
}
finally
{
console.writeline("Finally block");
}
console.writeline("After finally");
what would be printed in the above scenario? Yes guessed it right:
ex.Message--whatever it is (probably attempted division by zero)
Finally block
After finally
try
{
int a=1;
int b=0;
int c=a/b;
}
catch(Exception ex)
{
throw(ex);
}
finally
{
console.writeline("Finally block");
}
console.writeline("After finally");
What would this print? Nothing! It throws an error since the catch block raised an error.
In a good programming structure, your exceptions would be funneled, in the sense that this code will be handled from another layer. To stimulate such a case i'll nested try this code.
try
{
try
{
int a=1;
int b=0;
int c=a/b;
}
catch(Exception ex)
{
throw(ex);
}
finally
{
console.writeline("Finally block")
}
console.writeline("After finally");
}
catch(Exception ex)
{
console.writeline(ex.Message);
}
In this case the output would be:
It is clear that when you catch an exception and throw it again into other layers(Funneling), the code after throw does not get executed. It acts similar to just how a return inside a function works.
You now know why not to close your resources on codes after the catch block.Place them in finally block.