Calculate time difference between Pandas Dataframe indices

前端 未结 3 1731
执念已碎
执念已碎 2020-11-27 11:46

I am trying to add a column of deltaT to a dataframe where deltaT is the time difference between the successive rows (as indexed in the timeseries).

time             


        
3条回答
  •  伪装坚强ぢ
    2020-11-27 12:32

    >= Numpy version 1.7.0.

    Also can typecast df.index.to_series().diff() from timedelta64[ns](nano seconds- default dtype) to timedelta64[m](minutes) [Frequency conversion (astyping is equivalent of floor division)]

    df['ΔT'] = df.index.to_series().diff().astype('timedelta64[m]')
    
                         value      ΔT
    time                              
    2012-03-16 23:50:00      1     NaN
    2012-03-16 23:56:00      2     6.0
    2012-03-17 00:08:00      3    12.0
    2012-03-17 00:10:00      4     2.0
    2012-03-17 00:12:00      5     2.0
    2012-03-17 00:20:00      6     8.0
    2012-03-20 00:43:00      7  4343.0
    

    (ΔT dtype: float64)

    if you want to convert to int, fill na values with 0 before converting

    >>> df.index.to_series().diff().fillna(0).astype('timedelta64[m]').astype('int')
    
    time
    2012-03-16 23:50:00       0
    2012-03-16 23:56:00       6
    2012-03-17 00:08:00      12
    2012-03-17 00:10:00       2
    2012-03-17 00:12:00       2
    2012-03-17 00:20:00       8
    2012-03-20 00:43:00    4343
    Name: time, dtype: int64
    
    

    Timedelta data types support a large number of time units, as well as generic units which can be coerced into any of the other units.

    Below are the date units:

    Y   year
    M   month
    W   week
    D   day
    

    below are the time units:

    h   hour
    m   minute
    s   second
    ms  millisecond
    us  microsecond
    ns  nanosecond
    ps  picosecond
    fs  femtosecond
    as  attosecond
    

    if you want difference upto decimals use true division, i.e., divide by np.timedelta64(1, 'm')
    e.g. if df is as below,

                         value
    time                      
    2012-03-16 23:50:21      1
    2012-03-16 23:56:28      2
    2012-03-17 00:08:08      3
    2012-03-17 00:10:56      4
    2012-03-17 00:12:12      5
    2012-03-17 00:20:00      6
    2012-03-20 00:43:43      7
    
    

    check the difference between asyping(floor division) and true division below.

    >>> df.index.to_series().diff().astype('timedelta64[m]')
    time
    2012-03-16 23:50:21       NaN
    2012-03-16 23:56:28       6.0
    2012-03-17 00:08:08      11.0
    2012-03-17 00:10:56       2.0
    2012-03-17 00:12:12       1.0
    2012-03-17 00:20:00       7.0
    2012-03-20 00:43:43    4343.0
    Name: time, dtype: float64
    
    >>> df.index.to_series().diff()/np.timedelta64(1, 'm')
    time
    2012-03-16 23:50:21            NaN
    2012-03-16 23:56:28       6.116667
    2012-03-17 00:08:08      11.666667
    2012-03-17 00:10:56       2.800000
    2012-03-17 00:12:12       1.266667
    2012-03-17 00:20:00       7.800000
    2012-03-20 00:43:43    4343.716667
    Name: time, dtype: float64
    
    
    

提交回复
热议问题