I do this linear regression with StatsModels:
import numpy as np
import statsmodels.api as sm
from statsmodels.sandbox.regression.p
summary_frame and summary_table work well when you need exact results for a single quantile, but don't vectorize well. This will provide a normal approximation of the prediction interval (not confidence interval) and works for a vector of quantiles:
def ols_quantile(m, X, q):
# m: Statsmodels OLS model.
# X: X matrix of data to predict.
# q: Quantile.
#
from scipy.stats import norm
mean_pred = m.predict(X)
se = np.sqrt(m.scale)
return mean_pred + norm.ppf(q) * se