Strategies for simplifying math expressions

前端 未结 6 1728
醉梦人生
醉梦人生 2020-11-27 10:28

I have a well-formed tree that represents a mathematical expression. For example, given the string: \"1+2-3*4/5\", this gets parsed into:

subtr         


        
6条回答
  •  孤街浪徒
    2020-11-27 11:11

    You probably want to implement a term rewriting system. Regarding the underlying math, have a look at WikiPedia.

    Structure of a term rewrite module

    Since I implemented a solution recently...

    • First, prepare a class CExpression, which models the structure of your expression.

    • Implement CRule, which contains a pattern and a replacement. Use special symbols as pattern variables, which need to get bound during pattern matching and replaced in the replacement expression.

    • Then, implement a class CRule. It's main method applyRule(CExpression, CRule) tries to match the rule against any applicable subexpression of expression. In case it matches, return the result.

    • Finaly, implement a class CRuleSet, which is simply a set of CRule objects. The main method reduce(CExpression) applies the set of rules as long as no more rules can be applied and then returns the reduced expression.

    • Additionally, you need a class CBindingEnvironment, which maps already matched symbols to the matched values.

    Try to rewrite expression to a normal form

    Don't forget, that this approach works to a certain point, but is likely to be non complete. This is due to the fact, that all of the following rules perform local term rewrites.

    To make this local rewrite logic stronger, one should try to transform expressions into something I'd call a normal form. This is my approach:

    • If a term contains literal values, try to move the term as far to the right as possible.

    • Eventually, this literal value may appear rightmost and can be evaluated as part of a fully literal expression.

    When to evaluate fully literal expression

    An interesting question is when to evaluate fully literal expression. Suppose you have an expression

       x * ( 1 / 3 )
    

    which would reduce to

       x * 0.333333333333333333
    

    Now suppose x gets replaced by 3. This would yield something like

       0.999999999999999999999999
    

    Thus eager evaluation returns a slightly incorrect value.

    At the other side, if you keep ( 1 / 3 ) and first replace x by 3

       3 * ( 1 / 3 )
    

    a rewrite rule would give

       1
    

    Thus, it might be useful to evaluate fully literal expression late.

    Examples of rewrite rules

    Here is how my rules appear inside the application: The _1, _2, ... symbols match any subexpression:

    addRule( new TARuleFromString( '0+_1',   // left hand side  :: pattern
                                   '_1'      // right hand side :: replacement
                                 ) 
           );
    

    or a bit more complicated

    addRule( new TARuleFromString( '_1+_2*_1', 
                                   '(1+_2)*_1' 
                                 ) 
           );
    

    Certain special symbols only match special subexpressions. E.g. _Literal1, _Literal2, ... match only literal values:

    addRule( new TARuleFromString( 'exp(_Literal1) * exp(_Literal2 )', 
                                   'exp( _Literal1 + _Literal2 )' 
                                 ) 
           );
    

    This rule moves non-literal expression to the left:

    addRule( new TARuleFromString( '_Literal*_NonLiteral', 
                                   '_NonLiteral*_Literal' 
                                 ) 
           );
    

    Any name, that begins with a '_', is a pattern variable. While the system matches a rule, it keeps a stack of assignments of already matched symbols.

    Finally, don't forget that rules may yield non terminating replacement sequences. Thus while reducing expression, make the process remember, which intermediate expressions have already been reached before.

    In my implementation, I don't save intermediate expressions directly. I keep an array of MD5() hashes of intermediate expression.

    A set of rules as a starting point

    Here's a set of rules to get started:

                addRule( new TARuleFromString( '0+_1', '_1' ) );
                addRule( new TARuleFromString( '_Literal2=0-_1', '_1=0-_Literal2' ) );
                addRule( new TARuleFromString( '_1+0', '_1' ) );
    
                addRule( new TARuleFromString( '1*_1', '_1' ) );
                addRule( new TARuleFromString( '_1*1', '_1' ) );
    
                addRule( new TARuleFromString( '_1+_1', '2*_1' ) );
    
                addRule( new TARuleFromString( '_1-_1', '0' ) );
                addRule( new TARuleFromString( '_1/_1', '1' ) );
    
                // Rate = (pow((EndValue / BeginValue), (1 / (EndYear - BeginYear)))-1) * 100 
    
                addRule( new TARuleFromString( 'exp(_Literal1) * exp(_Literal2 )', 'exp( _Literal1 + _Literal2 )' ) );
                addRule( new TARuleFromString( 'exp( 0 )', '1' ) );
    
                addRule( new TARuleFromString( 'pow(_Literal1,_1) * pow(_Literal2,_1)', 'pow(_Literal1 * _Literal2,_1)' ) );
                addRule( new TARuleFromString( 'pow( _1, 0 )', '1' ) );
                addRule( new TARuleFromString( 'pow( _1, 1 )', '_1' ) );
                addRule( new TARuleFromString( 'pow( _1, -1 )', '1/_1' ) );
                addRule( new TARuleFromString( 'pow( pow( _1, _Literal1 ), _Literal2 )', 'pow( _1, _Literal1 * _Literal2 )' ) );
    
    //          addRule( new TARuleFromString( 'pow( _Literal1, _1 )', 'ln(_1) / ln(_Literal1)' ) );
                addRule( new TARuleFromString( '_literal1 = pow( _Literal2, _1 )', '_1 = ln(_literal1) / ln(_Literal2)' ) );
                addRule( new TARuleFromString( 'pow( _Literal2, _1 ) = _literal1 ', '_1 = ln(_literal1) / ln(_Literal2)' ) );
    
                addRule( new TARuleFromString( 'pow( _1, _Literal2 ) = _literal1 ', 'pow( _literal1, 1 / _Literal2 ) = _1' ) );
    
                addRule( new TARuleFromString( 'pow( 1, _1 )', '1' ) );
    
                addRule( new TARuleFromString( '_1 * _1 = _literal', '_1 = sqrt( _literal )' ) );
    
                addRule( new TARuleFromString( 'sqrt( _literal * _1 )', 'sqrt( _literal ) * sqrt( _1 )' ) );
    
                addRule( new TARuleFromString( 'ln( _Literal1 * _2 )', 'ln( _Literal1 ) + ln( _2 )' ) );
                addRule( new TARuleFromString( 'ln( _1 * _Literal2 )', 'ln( _Literal2 ) + ln( _1 )' ) );
                addRule( new TARuleFromString( 'log2( _Literal1 * _2 )', 'log2( _Literal1 ) + log2( _2 )' ) );
                addRule( new TARuleFromString( 'log2( _1 * _Literal2 )', 'log2( _Literal2 ) + log2( _1 )' ) );
                addRule( new TARuleFromString( 'log10( _Literal1 * _2 )', 'log10( _Literal1 ) + log10( _2 )' ) );
                addRule( new TARuleFromString( 'log10( _1 * _Literal2 )', 'log10( _Literal2 ) + log10( _1 )' ) );
    
                addRule( new TARuleFromString( 'ln( _Literal1 / _2 )', 'ln( _Literal1 ) - ln( _2 )' ) );
                addRule( new TARuleFromString( 'ln( _1 / _Literal2 )', 'ln( _Literal2 ) - ln( _1 )' ) );
                addRule( new TARuleFromString( 'log2( _Literal1 / _2 )', 'log2( _Literal1 ) - log2( _2 )' ) );
                addRule( new TARuleFromString( 'log2( _1 / _Literal2 )', 'log2( _Literal2 ) - log2( _1 )' ) );
                addRule( new TARuleFromString( 'log10( _Literal1 / _2 )', 'log10( _Literal1 ) - log10( _2 )' ) );
                addRule( new TARuleFromString( 'log10( _1 / _Literal2 )', 'log10( _Literal2 ) - log10( _1 )' ) );
    
    
                addRule( new TARuleFromString( '_Literal1 = _NonLiteral + _Literal2', '_Literal1 - _Literal2 = _NonLiteral' ) );
                addRule( new TARuleFromString( '_Literal1 = _NonLiteral * _Literal2', '_Literal1 / _Literal2 = _NonLiteral' ) );
                addRule( new TARuleFromString( '_Literal1 = _NonLiteral / _Literal2', '_Literal1 * _Literal2 = _NonLiteral' ) );
                addRule( new TARuleFromString( '_Literal1 =_NonLiteral - _Literal2',  '_Literal1 + _Literal2 = _NonLiteral' ) );
    
                addRule( new TARuleFromString( '_NonLiteral + _Literal2 = _Literal1 ', '_Literal1 - _Literal2 = _NonLiteral' ) );
                addRule( new TARuleFromString( '_NonLiteral * _Literal2 = _Literal1 ', '_Literal1 / _Literal2 = _NonLiteral' ) );
                addRule( new TARuleFromString( '_NonLiteral / _Literal2 = _Literal1 ', '_Literal1 * _Literal2 = _NonLiteral' ) );
                addRule( new TARuleFromString( '_NonLiteral - _Literal2 = _Literal1',  '_Literal1 + _Literal2 = _NonLiteral' ) );
    
                addRule( new TARuleFromString( '_NonLiteral - _Literal2 = _Literal1 ', '_Literal1 + _Literal2 = _NonLiteral' ) );
                addRule( new TARuleFromString( '_Literal2 - _NonLiteral = _Literal1 ', '_Literal2 - _Literal1 = _NonLiteral' ) );
    
                addRule( new TARuleFromString( '_Literal1 = sin( _NonLiteral )', 'asin( _Literal1 ) = _NonLiteral' ) );
                addRule( new TARuleFromString( '_Literal1 = cos( _NonLiteral )', 'acos( _Literal1 ) = _NonLiteral' ) );
                addRule( new TARuleFromString( '_Literal1 = tan( _NonLiteral )', 'atan( _Literal1 ) = _NonLiteral' ) );
    
                addRule( new TARuleFromString( '_Literal1 = ln( _1 )', 'exp( _Literal1 ) = _1' ) );
                addRule( new TARuleFromString( 'ln( _1 ) = _Literal1', 'exp( _Literal1 ) = _1' ) );
    
                addRule( new TARuleFromString( '_Literal1 = _NonLiteral', '_NonLiteral = _Literal1' ) );
    
                addRule( new TARuleFromString( '( _Literal1 / _2 ) = _Literal2', '_Literal1 / _Literal2 = _2 ' ) );
    
                addRule( new TARuleFromString( '_Literal*_NonLiteral', '_NonLiteral*_Literal' ) );
                addRule( new TARuleFromString( '_Literal+_NonLiteral', '_NonLiteral+_Literal' ) );
    
                addRule( new TARuleFromString( '_Literal1+(_Literal2+_NonLiteral)', '_NonLiteral+(_Literal1+_Literal2)' ) );
                addRule( new TARuleFromString( '_Literal1+(_Literal2+_1)', '_1+(_Literal1+_Literal2)' ) );
    
                addRule( new TARuleFromString( '(_1*_2)+(_3*_2)', '(_1+_3)*_2' ) );
                addRule( new TARuleFromString( '(_2*_1)+(_2*_3)', '(_1+_3)*_2' ) );
    
                addRule( new TARuleFromString( '(_2*_1)+(_3*_2)', '(_1+_3)*_2' ) );
                addRule( new TARuleFromString( '(_1*_2)+(_2*_3)', '(_1+_3)*_2' ) );
    
                addRule( new TARuleFromString( '(_Literal * _1 ) / _Literal', '_1' ) );
                addRule( new TARuleFromString( '(_Literal1 * _1 ) / _Literal2', '(_Literal1 * _Literal2 ) / _1' ) );
    
                addRule( new TARuleFromString( '(_1+_2)+_3', '_1+(_2+_3)' ) );
                addRule( new TARuleFromString( '(_1*_2)*_3', '_1*(_2*_3)' ) );
    
                addRule( new TARuleFromString( '_1+(_1+_2)', '(2*_1)+_2' ) );
    
                addRule( new TARuleFromString( '_1+_2*_1', '(1+_2)*_1' ) );
    
                addRule( new TARuleFromString( '_literal1 * _NonLiteral = _literal2', '_literal2 / _literal1 = _NonLiteral' ) );
                addRule( new TARuleFromString( '_literal1 + _NonLiteral = _literal2', '_literal2 - _literal1 = _NonLiteral' ) );
                addRule( new TARuleFromString( '_literal1 - _NonLiteral = _literal2', '_literal1 - _literal2 = _NonLiteral' ) );
                addRule( new TARuleFromString( '_literal1 / _NonLiteral = _literal2', '_literal1 * _literal2 = _NonLiteral' ) );
    

    Make rules first-class expressions

    An interesting point: Since the above rules are special expression, which get correctly evaluate by the expression parser, users can even add new rules and thus enhance the application's rewrite capabilities.

    Parsing expressions (or more general: languages)

    For Cocoa/OBjC applications, Dave DeLong's DDMathParser is a perfect candidate to syntactically analyse mathematical expressions.

    For other languages, our old friends Lex & Yacc or the newer GNU Bison might be of help.

    Far younger and with an enourmous set of ready to use syntax-files, ANTLR is a modern parser generator based on Java. Besides purely command-line use, ANTLRWorks provides a GUI frontend to construct and debug ANTLR based parsers. ANTLR generates grammars for various host language, like JAVA, C, Python, PHP or C#. The ActionScript runtime is currently broken.

    In case you'd like to learn how to parse expressions (or languages in general) from the bottom-up, I'd propose this free book's text from Niklaus Wirth (or the german book edition), the famous inventor of Pascal and Modula-2.

提交回复
热议问题