I\'m trying to find the point of intersection between a sphere and a line but honestly, I don\'t have any idea of how to do so. Could anyone help me on this one ?
I believe there is an inaccuracy in the solution by Markus Jarderot. Not sure what the problem is, but I'm pretty sure I translated it faithfully to code, and when I tried to find the intersection of a line segment known to cross into a sphere, I got a negative discriminant (no solutions).
I found this: http://www.codeproject.com/Articles/19799/Simple-Ray-Tracing-in-C-Part-II-Triangles-Intersec, which gives a similar but slightly different derivation.
I turned that into the following C# code and it works for me:
public static Point3D[] FindLineSphereIntersections( Point3D linePoint0, Point3D linePoint1, Point3D circleCenter, double circleRadius )
{
// http://www.codeproject.com/Articles/19799/Simple-Ray-Tracing-in-C-Part-II-Triangles-Intersec
double cx = circleCenter.X;
double cy = circleCenter.Y;
double cz = circleCenter.Z;
double px = linePoint0.X;
double py = linePoint0.Y;
double pz = linePoint0.Z;
double vx = linePoint1.X - px;
double vy = linePoint1.Y - py;
double vz = linePoint1.Z - pz;
double A = vx * vx + vy * vy + vz * vz;
double B = 2.0 * (px * vx + py * vy + pz * vz - vx * cx - vy * cy - vz * cz);
double C = px * px - 2 * px * cx + cx * cx + py * py - 2 * py * cy + cy * cy +
pz * pz - 2 * pz * cz + cz * cz - circleRadius * circleRadius;
// discriminant
double D = B * B - 4 * A * C;
if ( D < 0 )
{
return new Point3D[ 0 ];
}
double t1 = ( -B - Math.Sqrt ( D ) ) / ( 2.0 * A );
Point3D solution1 = new Point3D( linePoint0.X * ( 1 - t1 ) + t1 * linePoint1.X,
linePoint0.Y * ( 1 - t1 ) + t1 * linePoint1.Y,
linePoint0.Z * ( 1 - t1 ) + t1 * linePoint1.Z );
if ( D == 0 )
{
return new Point3D[] { solution1 };
}
double t2 = ( -B + Math.Sqrt( D ) ) / ( 2.0 * A );
Point3D solution2 = new Point3D( linePoint0.X * ( 1 - t2 ) + t2 * linePoint1.X,
linePoint0.Y * ( 1 - t2 ) + t2 * linePoint1.Y,
linePoint0.Z * ( 1 - t2 ) + t2 * linePoint1.Z );
// prefer a solution that's on the line segment itself
if ( Math.Abs( t1 - 0.5 ) < Math.Abs( t2 - 0.5 ) )
{
return new Point3D[] { solution1, solution2 };
}
return new Point3D[] { solution2, solution1 };
}