I have my data in pandas data frame as follows:
df1 = pd.DataFrame({\'A\':[\'yes\',\'yes\',\'yes\',\'yes\',\'no\',\'no\',\'yes\',\'yes\',\'yes\',\'no\'],
You can groupby on cols 'A' and 'B' and call size and then reset_index and rename the generated column:
In [26]:
df1.groupby(['A','B']).size().reset_index().rename(columns={0:'count'})
Out[26]:
A B count
0 no no 1
1 no yes 2
2 yes no 4
3 yes yes 3
update
A little explanation, by grouping on the 2 columns, this groups rows where A and B values are the same, we call size which returns the number of unique groups:
In[202]:
df1.groupby(['A','B']).size()
Out[202]:
A B
no no 1
yes 2
yes no 4
yes 3
dtype: int64
So now to restore the grouped columns, we call reset_index:
In[203]:
df1.groupby(['A','B']).size().reset_index()
Out[203]:
A B 0
0 no no 1
1 no yes 2
2 yes no 4
3 yes yes 3
This restores the indices but the size aggregation is turned into a generated column 0, so we have to rename this:
In[204]:
df1.groupby(['A','B']).size().reset_index().rename(columns={0:'count'})
Out[204]:
A B count
0 no no 1
1 no yes 2
2 yes no 4
3 yes yes 3
groupby does accept the arg as_index which we could have set to False so it doesn't make the grouped columns the index, but this generates a series and you'd still have to restore the indices and so on....:
In[205]:
df1.groupby(['A','B'], as_index=False).size()
Out[205]:
A B
no no 1
yes 2
yes no 4
yes 3
dtype: int64