Euclidean Distance Matrix Using Pandas

前端 未结 3 2145
温柔的废话
温柔的废话 2021-02-09 01:48

I have a .csv file that contains city, latitude and longitude data in the below format:

CITY|LATITUDE|LONGITUDE
A|40.745392|-73.978364
B|42.562786|-114.460503
C|         


        
3条回答
  •  不要未来只要你来
    2021-02-09 02:13

    You can use pdist and squareform methods from scipy.spatial.distance:

    In [12]: df
    Out[12]:
      CITY   LATITUDE   LONGITUDE
    0    A  40.745392  -73.978364
    1    B  42.562786 -114.460503
    2    C  37.227928  -77.401924
    3    D  41.245708  -75.881241
    4    E  41.308273  -72.927887
    
    In [13]: from scipy.spatial.distance import squareform, pdist
    
    In [14]: pd.DataFrame(squareform(pdist(df.iloc[:, 1:])), columns=df.CITY.unique(), index=df.CITY.unique())
    Out[14]:
               A          B          C          D          E
    A   0.000000  40.522913   4.908494   1.967551   1.191779
    B  40.522913   0.000000  37.440606  38.601738  41.551558
    C   4.908494  37.440606   0.000000   4.295932   6.055264
    D   1.967551  38.601738   4.295932   0.000000   2.954017
    E   1.191779  41.551558   6.055264   2.954017   0.000000
    

提交回复
热议问题