We use stack traces in proprietary assert like macro to catch developer mistakes - when error is caught, stack trace is printed.
I find gcc\'s pair
I suppose line numbers are related to current eip value, right?
SOLUTION 1:
Then you can use something like GetThreadContext(), except that you're working on linux. I googled around a bit and found something similar, ptrace():
The ptrace() system call provides a means by which a parent process may observe and control the execution of another process, and examine and change its core image and registers. [...] The parent can initiate a trace by calling fork(2) and having the resulting child do a PTRACE_TRACEME, followed (typically) by an exec(3). Alternatively, the parent may commence trace of an existing process using PTRACE_ATTACH.
Now I was thinking, you can do a 'main' program which checks for signals that are sent to its child, the real program you're working on. after fork() it call waitid():
All of these system calls are used to wait for state changes in a child of the calling process, and obtain information about the child whose state has changed.
and if a SIGSEGV (or something similar) is caught call ptrace() to obtain eip's value.
PS: I've never used these system calls (well, actually, I've never seen them before ;) so I don't know if it's possible neither can help you. At least I hope these links are useful. ;)
SOLUTION 2:
The first solution is quite complicated, right? I came up with a much simpler one: using signal() catch the signals you are interested in and call a simple function that reads the eip value stored in the stack:
...
signal(SIGSEGV, sig_handler);
...
void sig_handler(int signum)
{
int eip_value;
asm {
push eax;
mov eax, [ebp - 4]
mov eip_value, eax
pop eax
}
// now you have the address of the
// **next** instruction after the
// SIGSEGV was received
}
That asm syntax is Borland's one, just adapt it to GAS. ;)