Convert categorical data in pandas dataframe

后端 未结 10 1913
予麋鹿
予麋鹿 2020-11-27 10:01

I have a dataframe with this type of data (too many columns):

col1        int64
col2        int64
col3        category
col4        category
col5        categ         


        
10条回答
  •  野性不改
    2020-11-27 10:23

    First, to convert a Categorical column to its numerical codes, you can do this easier with: dataframe['c'].cat.codes.
    Further, it is possible to select automatically all columns with a certain dtype in a dataframe using select_dtypes. This way, you can apply above operation on multiple and automatically selected columns.

    First making an example dataframe:

    In [75]: df = pd.DataFrame({'col1':[1,2,3,4,5], 'col2':list('abcab'),  'col3':list('ababb')})
    
    In [76]: df['col2'] = df['col2'].astype('category')
    
    In [77]: df['col3'] = df['col3'].astype('category')
    
    In [78]: df.dtypes
    Out[78]:
    col1       int64
    col2    category
    col3    category
    dtype: object
    

    Then by using select_dtypes to select the columns, and then applying .cat.codes on each of these columns, you can get the following result:

    In [80]: cat_columns = df.select_dtypes(['category']).columns
    
    In [81]: cat_columns
    Out[81]: Index([u'col2', u'col3'], dtype='object')
    
    In [83]: df[cat_columns] = df[cat_columns].apply(lambda x: x.cat.codes)
    
    In [84]: df
    Out[84]:
       col1  col2  col3
    0     1     0     0
    1     2     1     1
    2     3     2     0
    3     4     0     1
    4     5     1     1
    

提交回复
热议问题