There are many questions here with similar titles, but I couldn\'t find one that\'s addressing this issue.
I have dataframes from many different origins, and I want to f
You can use pd.IndexSlicer.
>>> df.loc[pd.IndexSlice[filt[filt].index.values, :], :]
c
a b
1 1 0
2 1
3 2
3 1 6
2 7
3 8
where filt[filt].index.values
is just [1, 3]
. In other words
>>> df.loc[pd.IndexSlice[[1, 3], :]]
c
a b
1 1 0
2 1
3 2
3 1 6
2 7
3 8
so if you design your filter construction a bit differently, the expression gets shorter. The advantave over Emanuele Paolini's solution df[filt[df.index.get_level_values('a')].values]
is, that you have more control over the indexing.
The topic of multiindex slicing is covered in more depth here.
Here the full code
import pandas as pd
import numpy as np
df = pd.DataFrame({'a':[1,1,1,2,2,2,3,3,3], 'b':[1,2,3,1,2,3,1,2,3], 'c':range(9)}).set_index(['a', 'b'])
filt = pd.Series({1:True, 2:False, 3:True})
print(df.loc[pd.IndexSlice[[1, 3], :]])
print(df.loc[(df.index.levels[0].values[filt], slice(None)), :])
print(df.loc[pd.IndexSlice[filt[filt].index.values, :], :])