Konrad said:
As a consequence, a purely functional program always yields the same value for an input,
and the order of evaluation is not well-defined; which means that uncertain values like
user input or random values are hard to model in purely functional languages.
The order of evaluation in a purely functional program may be hard(er) to reason about (especially with laziness) or even unimportant but I think that saying it is not well defined makes it sound like you can't tell if your program is going to work at all!
Perhaps a better explanation would be that control flow in functional programs is based on when the value of a function's arguments are needed. The Good Thing about this that in well written programs, state becomes explicit: each function lists its inputs as parameters instead of arbitrarily munging global state. So on some level, it is easier to reason about order of evaluation with respect to one function at a time. Each function can ignore the rest of the universe and focus on what it needs to do. When combined, functions are guaranteed to work the same[1] as they would in isolation.
... uncertain values like user input or random values are hard to model in purely
functional languages.
The solution to the input problem in purely functional programs is to embed an imperative language as a DSL using a sufficiently powerful abstraction. In imperative (or non-pure functional) languages this is not needed because you can "cheat" and pass state implicitly and order of evaluation is explicit (whether you like it or not). Because of this "cheating" and forced evaluation of all parameters to every function, in imperative languages 1) you lose the ability to create your own control flow mechanisms (without macros), 2) code isn't inherently thread safe and/or parallelizable by default, 3) and implementing something like undo (time travel) takes careful work (imperative programmer must store a recipe for getting the old value(s) back!), whereas pure functional programming buys you all these things—and a few more I may have forgotten—"for free".
I hope this doesn't sound like zealotry, I just wanted to add some perspective. Imperative programming and especially mixed paradigm programming in powerful languages like C# 3.0 are still totally effective ways to get things done and there is no silver bullet.
[1] ... except possibly with respect memory usage (cf. foldl and foldl' in Haskell).