Can someone please help me understand the following Morris inorder tree traversal algorithm without using stacks or recursion ? I was trying to understand how it works, but
I hope the pseudo-code below is more revealing:
node = root
while node != null
if node.left == null
visit the node
node = node.right
else
let pred_node be the inorder predecessor of node
if pred_node.right == null /* create threading in the binary tree */
pred_node.right = node
node = node.left
else /* remove threading from the binary tree */
pred_node.right = null
visit the node
node = node.right
Referring to the C++ code in the question, the inner while loop finds the in-order predecessor of the current node. In a standard binary tree, the right child of the predecessor must be null, while in the threaded version the right child must point to the current node. If the right child is null, it is set to the current node, effectively creating the threading, which is used as a returning point that would otherwise have to be on stored, usually on a stack. If the right child is not null, then the algorithm makes sure that the original tree is restored, and then continues traversal in the right subtree (in this case it is known that the left subtree was visited).