I would like to find out what is the most efficient way to achieve the following in Python:
Suppose we have two lists a and b which are of equa
unique with return_index uses argsort. With maximum.accumulate that isn't needed. So we can cannibalize unique and do:
In [313]: a = [2,1,2,3,4,5,4,6,5,7,8,9,8,10,11]
In [314]: arr = np.array(a)
In [315]: aux = np.maximum.accumulate(arr)
In [316]: flag = np.concatenate(([True], aux[1:] != aux[:-1])) # key unique step
In [317]: idx = np.nonzero(flag)
In [318]: idx
Out[318]: (array([ 0, 3, 4, 5, 7, 9, 10, 11, 13, 14], dtype=int32),)
In [319]: arr[idx]
Out[319]: array([ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
In [320]: np.array(b)[idx]
Out[320]: array([ 1, 4, 5, 6, 8, 10, 11, 12, 14, 15])
In [323]: np.unique(aux, return_index=True)[1]
Out[323]: array([ 0, 3, 4, 5, 7, 9, 10, 11, 13, 14], dtype=int32)
def foo(arr):
aux=np.maximum.accumulate(arr)
flag = np.concatenate(([True], aux[1:] != aux[:-1]))
return np.nonzero(flag)[0]
In [330]: timeit foo(arr)
....
100000 loops, best of 3: 12.5 µs per loop
In [331]: timeit np.unique(np.maximum.accumulate(arr), return_index=True)[1]
....
10000 loops, best of 3: 21.5 µs per loop
With (10000,) shape medium this sort-less unique has a substantial speed advantage:
In [334]: timeit np.unique(np.maximum.accumulate(medium[0]), return_index=True)[1]
1000 loops, best of 3: 351 µs per loop
In [335]: timeit foo(medium[0])
The slowest run took 4.14 times longer ....
10000 loops, best of 3: 48.9 µs per loop
[1]: Use np.source(np.unique) to see code, or ?? in IPython