i\'m starting up learning prolog (i use SWI-prolog) and i did a simple exercise in which i have 2 lists and i want to calculate their intersection and union. Here is my code
The following is based on my previous answer to Remove duplicates in list (Prolog); the basic idea is, in turn, based on @false's answer to Prolog union for A U B U C.
What message do I want to convey to you?
if_/3
and (=)/3
a logically pure implementation can be
if_/3
and (=)/3
does use meta-logical Prolog features internally, but (from the outside) behaves logically pure.The following implementation of list_list_intersection/3
and list_list_union/3
uses list_item_isMember/3
and list_item_subtracted/3
, defined in a previous answer:
list_list_union([],Bs,Bs).
list_list_union([A|As],Bs1,[A|Cs]) :-
list_item_subtracted(Bs1,A,Bs),
list_list_union(As,Bs,Cs).
list_list_intersection([],_,[]).
list_list_intersection([A|As],Bs,Cs1) :-
if_(list_item_isMember(Bs,A), Cs1 = [A|Cs], Cs1 = Cs),
list_list_intersection(As,Bs,Cs).
Here's the query you posted as part of your question:
?- list_list_intersection([1,3,5,2,4],[6,1,2],Intersection).
Intersection = [1, 2]. % succeeds deterministically
Let's try something else... The following two queries should be logically equivalent:
?- A=1,B=3, list_list_intersection([1,3,5,2,4],[A,B],Intersection).
A = 1,
B = 3,
Intersection = [1, 3].
?- list_list_intersection([1,3,5,2,4],[A,B],Intersection),A=1,B=3.
A = 1,
B = 3,
Intersection = [1, 3] ;
false.
And... the bottom line is?
Neither list_list_union(As,Bs,Cs)
nor list_list_intersection(As,Bs,Cs)
guarantee that Cs
doesn't contain duplicates. If that bothers you, the code needs to be adapted.
Here are some more queries (and answers) with As
and/or Bs
containing duplicates:
?- list_list_intersection([1,3,5,7,1,3,5,7],[1,2,3,1,2,3],Cs).
Cs = [1, 3, 1, 3].
?- list_list_intersection([1,2,3],[1,1,1,1],Cs).
Cs = [1].
?- list_list_union([1,3,5,1,3,5],[1,2,3,1,2,3],Cs).
Cs = [1, 3, 5, 1, 3, 5, 2, 2].
?- list_list_union([1,2,3],[1,1,1,1],Cs).
Cs = [1, 2, 3].
?- list_list_union([1,1,1,1],[1,2,3],Cs).
Cs = [1, 1, 1, 1, 2, 3].
For the sake of completeness, here's how we could enforce that the intersection and the union are sets---that is lists that do not contain any duplicate elements.
The following code is pretty straight-forward:
list_list_intersectionSet([],_,[]).
list_list_intersectionSet([A|As1],Bs,Cs1) :-
if_(list_item_isMember(Bs,A), Cs1 = [A|Cs], Cs1 = Cs),
list_item_subtracted(As1,A,As),
list_list_intersectionSet(As,Bs,Cs).
list_list_unionSet([],Bs1,Bs) :-
list_setB(Bs1,Bs).
list_list_unionSet([A|As1],Bs1,[A|Cs]) :-
list_item_subtracted(As1,A,As),
list_item_subtracted(Bs1,A,Bs),
list_list_unionSet(As,Bs,Cs).
Note that list_list_unionSet/3
is based on list_setB/2
, defined here.
Now let's see both list_list_intersectionSet/3
and list_list_unionSet/3
in action:
?- list_list_unionSet([1,2,3,1,2,3,3,2,1],[4,5,6,2,7,7,7],Xs).
Xs = [1, 2, 3, 4, 5, 6, 7].
?- list_list_intersectionSet([1,2,3,1,2,3,3,2,1],[4,5,6,2,7,7,7],Xs).
Xs = [2].
Here is an additional query taken from @GuyCoder's comment (plus two variants of it):
?- list_list_unionSet(Xs,[],[a,b]). Xs = [a,b] ; Xs = [a,b,b] ; Xs = [a,b,b,b] ... ?- list_list_unionSet([],Xs,[a,b]). Xs = [a,b] ; Xs = [a,b,b] ; Xs = [a,b,b,b] ... ?- list_list_unionSet(Xs,Ys,[a,b]). Xs = [], Ys = [a,b] ; Xs = [], Ys = [a,b,b] ; Xs = [], Ys = [a,b,b,b] ...
With the old version of list_item_subtracted/3
, above queries didn't terminate existentially.
With the new one they do. As the solution set size is infinite, none of these queries terminate universally.