I\'m trying to replicate (and if possible improve on) Python 2.x\'s sorting behaviour in 3.x, so that mutually orderable types like int, float etc.
This answer aims to faithfully re-create the Python 2 sort order, in Python 3, in every detail.
The actual Python 2 implementation is quite involved, but object.c's default_3way_compare does the final fallback after instances have been given a chance to implement normal comparison rules. This is after individual types have been given a chance to compare (via the __cmp__ or __lt__ hooks).
Implementing that function as pure Python in a wrapper, plus emulating the exceptions to the rules (dict and complex numbers specifically) gives us the same Python 2 sorting semantics in Python 3:
from numbers import Number
# decorator for type to function mapping special cases
def per_type_cmp(type_):
try:
mapping = per_type_cmp.mapping
except AttributeError:
mapping = per_type_cmp.mapping = {}
def decorator(cmpfunc):
mapping[type_] = cmpfunc
return cmpfunc
return decorator
class python2_sort_key(object):
_unhandled_types = {complex}
def __init__(self, ob):
self._ob = ob
def __lt__(self, other):
_unhandled_types = self._unhandled_types
self, other = self._ob, other._ob # we don't care about the wrapper
# default_3way_compare is used only if direct comparison failed
try:
return self < other
except TypeError:
pass
# hooks to implement special casing for types, dict in Py2 has
# a dedicated __cmp__ method that is gone in Py3 for example.
for type_, special_cmp in per_type_cmp.mapping.items():
if isinstance(self, type_) and isinstance(other, type_):
return special_cmp(self, other)
# explicitly raise again for types that won't sort in Python 2 either
if type(self) in _unhandled_types:
raise TypeError('no ordering relation is defined for {}'.format(
type(self).__name__))
if type(other) in _unhandled_types:
raise TypeError('no ordering relation is defined for {}'.format(
type(other).__name__))
# default_3way_compare from Python 2 as Python code
# same type but no ordering defined, go by id
if type(self) is type(other):
return id(self) < id(other)
# None always comes first
if self is None:
return True
if other is None:
return False
# Sort by typename, but numbers are sorted before other types
self_tname = '' if isinstance(self, Number) else type(self).__name__
other_tname = '' if isinstance(other, Number) else type(other).__name__
if self_tname != other_tname:
return self_tname < other_tname
# same typename, or both numbers, but different type objects, order
# by the id of the type object
return id(type(self)) < id(type(other))
@per_type_cmp(dict)
def dict_cmp(a, b, _s=object()):
if len(a) != len(b):
return len(a) < len(b)
adiff = min((k for k in a if a[k] != b.get(k, _s)), key=python2_sort_key, default=_s)
if adiff is _s:
# All keys in a have a matching value in b, so the dicts are equal
return False
bdiff = min((k for k in b if b[k] != a.get(k, _s)), key=python2_sort_key)
if adiff != bdiff:
return python2_sort_key(adiff) < python2_sort_key(bdiff)
return python2_sort_key(a[adiff]) < python2_sort_key(b[bdiff])
I incorporated handling dictionary sorting as implemented in Python 2, since that'd be supported by the type itself via a __cmp__ hook. I've stuck to the Python 2 ordering for the keys and values as well, naturally.
I've also added special casing for complex numbers, as Python 2 raises an exception when you try sort to these:
>>> sorted([0.0, 1, (1+0j), False, (2+3j)])
Traceback (most recent call last):
File "", line 1, in
TypeError: no ordering relation is defined for complex numbers
You may have to add more special cases if you want to emulate Python 2 behaviour exactly.
If you wanted to sort complex numbers anyway you'll need to consistently put them with the non-numbers group; e.g.:
# Sort by typename, but numbers are sorted before other types
if isinstance(self, Number) and not isinstance(self, complex):
self_tname = ''
else:
self_tname = type(self).__name__
if isinstance(other, Number) and not isinstance(other, complex):
other_tname = ''
else:
other_tname = type(other).__name__
Some test cases:
>>> sorted([0, 'one', 2.3, 'four', -5], key=python2_sort_key)
[-5, 0, 2.3, 'four', 'one']
>>> sorted([0, 123.4, 5, -6, 7.89], key=python2_sort_key)
[-6, 0, 5, 7.89, 123.4]
>>> sorted([{1:2}, {3:4}], key=python2_sort_key)
[{1: 2}, {3: 4}]
>>> sorted([{1:2}, None, {3:4}], key=python2_sort_key)
[None, {1: 2}, {3: 4}]