Sorry for opening this topic again, but thinking about this topic itself has started giving me an Undefined Behavior. Want to move into the zone of well-defined behavior.
In thinking about expressions like those mentioned, I find it useful to imagine a machine where memory has interlocks so that reading a memory location as part of a read-modify-write sequence will cause any attempted read or write, other than the concluding write of the sequence, to be stalled until the sequence completes. Such a machine would hardly be an absurd concept; indeed, such a design could simplify many multi-threaded code scenarios. On the other hand, an expression like "x=y++;" could fail on such a machine if 'x' and 'y' were references to the same variable, and the compiler's generated code did something like read-and-lock reg1=y; reg2=reg1+1; write x=reg1; write-and-unlock y=reg2. That would be a very reasonable code sequence on processors where writing a newly-computed value would impose a pipeline delay, but the write to x would lock up the processor if y were aliased to the same variable.