I\'m designing a DSL in Haskell and I would like to have an assignment operation. Something like this (the code below is just for explaining my problem in a limited context, I d
You should know that your goals are quite lofty. I don't think you will get very far treating your variables exactly as strings. I'd do something slightly more annoying to use, but more practical. Define a monad for your DSL, which I'll call M:
newtype M a = ...
data Exp a where
... as before ...
data Var a -- a typed variable
assign :: Var a -> Exp a -> M ()
declare :: String -> a -> M (Var a)
I'm not sure why you have Exp a for assignment and just a for declaration, but I reproduced that here. The String in declare is just for cosmetics, if you need it for code generation or error reporting or something -- the identity of the variable should really not be tied to that name. So it's usually used as
myFunc = do
foobar <- declare "foobar" 42
which is the annoying redundant bit. Haskell doesn't really have a good way around this (though depending on what you're doing with your DSL, you may not need the string at all).
As for the implementation, maybe something like
data Stmt = forall a. Assign (Var a) (Exp a)
| forall a. Declare (Var a) a
data Var a = Var String Integer -- string is auxiliary from before, integer
-- stores real identity.
For M, we need a unique supply of names and a list of statements to output.
newtype M a = M { runM :: WriterT [Stmt] (StateT Integer Identity a) }
deriving (Functor, Applicative, Monad)
Then the operations as usually fairly trivial.
assign v a = M $ tell [Assign v a]
declare name a = M $ do
ident <- lift get
lift . put $! ident + 1
let var = Var name ident
tell [Declare var a]
return var
I've made a fairly large DSL for code generation in another language using a fairly similar design, and it scales well. I find it a good idea to stay "near the ground", just doing solid modeling without using too many fancy type-level magical features, and accepting minor linguistic annoyances. That way Haskell's main strength -- it's ability to abstract -- can still be used for code in your DSL.
One drawback is that everything needs to be defined within a do block, which can be a hinderance to good organization as the amount of code grows. I'll steal declare to show a way around that:
declare :: String -> M a -> M a
used like
foo = declare "foo" $ do
-- actual function body
then your M can have as a component of its state a cache from names to variables, and the first time you use a declaration with a certain name you render it and put it in a variable (this will require a bit more sophisticated monoid than [Stmt] as the target of your Writer). Later times you just look up the variable. It does have a rather floppy dependence on uniqueness of names, unfortunately; an explicit model of namespaces can help with that but never eliminate it entirely.