I am trying to use the crossvalidation cv.glm function from the boot library in R to determine the number of misclassifications when a glm logistic regression is applied.
It sounds like you might do well to just use the cost function (i.e. the one named cost
) defined further down in the "Examples" section of ?cv.glm
. Quoting from that section:
# [...] Since the response is a binary variable an
# appropriate cost function is
cost <- function(r, pi = 0) mean(abs(r-pi) > 0.5)
This does essentially what you were trying to do with your example. Replacing your "no" and "yes" with 0
and 1
, lets say you have two vectors, predict
and response
. Then cost()
is nicely designed to take them and return the mean classification rate:
## Simulate some reasonable data
set.seed(1)
predict <- seq(0.1, 0.9, by=0.1)
response <- rbinom(n=length(predict), prob=predict, size=1)
response
# [1] 0 0 0 1 0 0 0 1 1
## Demonstrate the function 'cost()' in action
cost(response, predict)
# [1] 0.3333333 ## Which is right, as 3/9 elements (4, 6, & 7) are misclassified
## (assuming you use 0.5 as the cutoff for your predictions).
I'm guessing the trickiest bit of this will be just getting your mind fully wrapped around the idea of passing a function in as an argument. (At least that was for me, for the longest time, the hardest part of using the boot package, which requires that move in a fair number of places.)
Added on 2016-03-22:
The function cost()
, given above is in my opinion unnecessarily obfuscated; the following alternative does exactly the same thing but in a more expressive way:
cost <- function(r, pi = 0) {
mean((pi < 0.5) & r==1 | (pi > 0.5) & r==0)
}