I am currently generating clustermaps in seaborn and labeling the row colors as below.
matrix = pd.DataFrame(np.random.random_integers(0,1, size=(50,4)))
labels
The solution is below. The seaborn API does actually allow this to be done.
matrix = pd.DataFrame(np.random.random_integers(0,1, size=(50,4)))
labels = np.random.random_integers(0,5, size=50)
lut = dict(zip(set(labels), sns.hls_palette(len(set(labels)), l=0.5, s=0.8)))
row_colors = pd.DataFrame(labels)[0].map(lut)
#Create additional row_colors here
labels2 = np.random.random_integers(0,1, size=50)
lut2 = dict(zip(set(labels2), sns.hls_palette(len(set(labels2)), l=0.5, s=0.8)))
row_colors2 = pd.DataFrame(labels2)[0].map(lut2)
g=sns.clustermap(matrix, col_cluster=False, linewidths=0.1, cmap='coolwarm', row_colors=[row_colors, row_colors2])
plt.show()
This produces a Clustermap with two additional columns:
