I have very large tables (30 million rows) that I would like to load as a dataframes in R. read.table() has a lot of convenient features, but it seems like the
Here is an example that utilizes fread from data.table 1.8.7
The examples come from the help page to fread, with the timings on my windows XP Core 2 duo E8400.
library(data.table)
# Demo speedup
n=1e6
DT = data.table( a=sample(1:1000,n,replace=TRUE),
b=sample(1:1000,n,replace=TRUE),
c=rnorm(n),
d=sample(c("foo","bar","baz","qux","quux"),n,replace=TRUE),
e=rnorm(n),
f=sample(1:1000,n,replace=TRUE) )
DT[2,b:=NA_integer_]
DT[4,c:=NA_real_]
DT[3,d:=NA_character_]
DT[5,d:=""]
DT[2,e:=+Inf]
DT[3,e:=-Inf]
write.table(DT,"test.csv",sep=",",row.names=FALSE,quote=FALSE)
cat("File size (MB):",round(file.info("test.csv")$size/1024^2),"\n")
## File size (MB): 51
system.time(DF1 <- read.csv("test.csv",stringsAsFactors=FALSE))
## user system elapsed
## 24.71 0.15 25.42
# second run will be faster
system.time(DF1 <- read.csv("test.csv",stringsAsFactors=FALSE))
## user system elapsed
## 17.85 0.07 17.98
system.time(DF2 <- read.table("test.csv",header=TRUE,sep=",",quote="",
stringsAsFactors=FALSE,comment.char="",nrows=n,
colClasses=c("integer","integer","numeric",
"character","numeric","integer")))
## user system elapsed
## 10.20 0.03 10.32
require(data.table)
system.time(DT <- fread("test.csv"))
## user system elapsed
## 3.12 0.01 3.22
require(sqldf)
system.time(SQLDF <- read.csv.sql("test.csv",dbname=NULL))
## user system elapsed
## 12.49 0.09 12.69
# sqldf as on SO
f <- file("test.csv")
system.time(SQLf <- sqldf("select * from f", dbname = tempfile(), file.format = list(header = T, row.names = F)))
## user system elapsed
## 10.21 0.47 10.73
require(ff)
system.time(FFDF <- read.csv.ffdf(file="test.csv",nrows=n))
## user system elapsed
## 10.85 0.10 10.99
## user system elapsed Method
## 24.71 0.15 25.42 read.csv (first time)
## 17.85 0.07 17.98 read.csv (second time)
## 10.20 0.03 10.32 Optimized read.table
## 3.12 0.01 3.22 fread
## 12.49 0.09 12.69 sqldf
## 10.21 0.47 10.73 sqldf on SO
## 10.85 0.10 10.99 ffdf