I am having some trouble translating my MATLAB code into Python via Scipy & Numpy. I am stuck on how to find optimal parameter values (k0 and k1) for my system of ODEs to fi
# cleaned up a bit to get my head around it - thanks for sharing
import pylab as pp
import numpy as np
from scipy import integrate, optimize
class Parameterize_ODE():
def __init__(self):
self.X = np.linspace(0,9,10)
self.y = np.array([0.000,0.416,0.489,0.595,0.506,0.493,0.458,0.394,0.335,0.309])
self.y0 = [1,0,0] # inital conditions ODEs
def ode(self, y, X, p):
return (-p[0]*y[0],
p[0]*y[0]-p[1]*y[1],
p[1]*y[1])
def model(self, X, p):
return integrate.odeint(self.ode, self.y0, X, args=(p,))
def f_resid(self, p):
return self.y - self.model(self.X, p)[:,1]
def optim(self, p_quess):
return optimize.leastsq(self.f_resid, p_guess) # fit params
po = Parameterize_ODE(); p_guess = [0.2, 0.3]
c, kvg = po.optim(p_guess)
# --- show ---
print "parameter values are ", c, kvg
x = np.linspace(min(po.X), max(po.X), 2000)
pp.plot(po.X, po.y,'.r',x, po.model(x, c)[:,1],'-b')
pp.xlabel('X',{"fontsize":16}); pp.ylabel("y",{"fontsize":16}); pp.legend(('data','fit'),loc=0); pp.show()