As a matter of best practices, I\'m trying to determine if it\'s better to create a function and apply() it across a matrix, or if it\'s better to simply loop a
Better example for speed advantage of for loop.
for_loop <- function(x){
out <- vector(mode="numeric",length=NROW(x))
for(i in seq(length(out)))
out[i] <- max(x[i,])
return(out)
}
apply_loop <- function(x){
apply(x,1,max)
}
million <- matrix(rnorm(1000000),ncol=10)
> system.time(apply_loop(million))
user system elapsed
0.57 0.00 0.56
> system.time(for_loop(million))
user system elapsed
0.32 0.00 0.33
EDIT
Version suggested by Eduardo.
max_col <- function(x){
x[cbind(seq(NROW(x)),max.col(x))]
}
By row
> system.time(for_loop(million))
user system elapsed
0.99 0.00 1.11
> system.time(apply_loop(million))
user system elapsed
1.40 0.00 1.44
> system.time(max_col(million))
user system elapsed
0.06 0.00 0.06
By column
> system.time(for_loop(t(million)))
user system elapsed
0.05 0.00 0.05
> system.time(apply_loop(t(million)))
user system elapsed
0.07 0.00 0.07
> system.time(max_col(t(million)))
user system elapsed
0.04 0.00 0.06