DataFrame
df = pd.DataFrame({\'A\': [[\'gener\'], [\'gener\'], [\'system\'], [\'system\'], [\'gutter\'], [\'gutter\'], [\'gutter\'], [\'gutter\'
Just use the apply function supported by pandas, it's great.
Since you may have more than two columns for intersecting, the auxiliary function can be prepared like this and then applied with the DataFrame.apply function (see http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.apply.html, note the option axis=1 means "across the series" while axis=0 means "along the series", where one
series is just one column in the data frame). Each row across the columns is then passed as a iterable Series object to the function applied.
def intersect(ss):
ss = iter(ss)
s = set(next(ss))
for t in ss:
s.intersection_update(t) # `t' must not be a `set' here, `list' or any `Iterable` is OK
return s
res = df.apply(intersect, axis=1)
>>> res
0 {}
1 {}
2 {system}
3 {system}
4 {gutter}
5 {gutter}
6 {gutter}
7 {gutter}
8 {gutter}
9 {gutter}
10 {aluminum}
11 {aluminum}
12 {aluminum}
13 {aluminum}
14 {aluminum}
15 {aluminum}
16 {aluminum}
17 {aluminum}
18 {aluminum}
19 {aluminum, toledo}
You can augment further operations on the result of the auxiliary function, or make some variations similarly.
Hope this helps.