numpy.amax() will find the max value in an array, and numpy.amin() does the same for the min value. If I want to find both max and min, I have to call both functions, which
Just to get some ideas on the numbers one could expect, given the following approaches:
import numpy as np
def extrema_np(arr):
return np.max(arr), np.min(arr)
import numba as nb
@nb.jit(nopython=True)
def extrema_loop_nb(arr):
n = arr.size
max_val = min_val = arr[0]
for i in range(1, n):
item = arr[i]
if item > max_val:
max_val = item
elif item < min_val:
min_val = item
return max_val, min_val
import numba as nb
@nb.jit(nopython=True)
def extrema_while_nb(arr):
n = arr.size
odd = n % 2
if not odd:
n -= 1
max_val = min_val = arr[0]
i = 1
while i < n:
x = arr[i]
y = arr[i + 1]
if x > y:
x, y = y, x
min_val = min(x, min_val)
max_val = max(y, max_val)
i += 2
if not odd:
x = arr[n]
min_val = min(x, min_val)
max_val = max(x, max_val)
return max_val, min_val
%%cython -c-O3 -c-march=native -a
#cython: language_level=3, boundscheck=False, wraparound=False, initializedcheck=False, cdivision=True, infer_types=True
import numpy as np
cdef void _extrema_loop_cy(
long[:] arr,
size_t n,
long[:] result):
cdef size_t i
cdef long item, max_val, min_val
max_val = arr[0]
min_val = arr[0]
for i in range(1, n):
item = arr[i]
if item > max_val:
max_val = item
elif item < min_val:
min_val = item
result[0] = max_val
result[1] = min_val
def extrema_loop_cy(arr):
result = np.zeros(2, dtype=arr.dtype)
_extrema_loop_cy(arr, arr.size, result)
return result[0], result[1]
%%cython -c-O3 -c-march=native -a
#cython: language_level=3, boundscheck=False, wraparound=False, initializedcheck=False, cdivision=True, infer_types=True
import numpy as np
cdef void _extrema_while_cy(
long[:] arr,
size_t n,
long[:] result):
cdef size_t i, odd
cdef long x, y, max_val, min_val
max_val = arr[0]
min_val = arr[0]
odd = n % 2
if not odd:
n -= 1
max_val = min_val = arr[0]
i = 1
while i < n:
x = arr[i]
y = arr[i + 1]
if x > y:
x, y = y, x
min_val = min(x, min_val)
max_val = max(y, max_val)
i += 2
if not odd:
x = arr[n]
min_val = min(x, min_val)
max_val = max(x, max_val)
result[0] = max_val
result[1] = min_val
def extrema_while_cy(arr):
result = np.zeros(2, dtype=arr.dtype)
_extrema_while_cy(arr, arr.size, result)
return result[0], result[1]
(the extrema_loop_*() approaches are similar to what is proposed here, while extrema_while_*() approaches are based on the code from here)
The following timings:
indicate that the extrema_while_*() are the fastest, with extrema_while_nb() being fastest. In any case, also the extrema_loop_nb() and extrema_loop_cy() solutions do outperform the NumPy-only approach (using np.max() and np.min() separately).
Finally, note that none of these is as flexible as np.min()/np.max() (in terms of n-dim support, axis parameter, etc.).
(full code is available here)