I am trying to implement a function primeFac() that takes as input a positive integer n and returns a list containing all the numbers in the prime
Here is my version of factorization by trial division, which incorporates the optimization of dividing only by two and the odd integers proposed by Daniel Fischer:
def factors(n):
f, fs = 3, []
while n % 2 == 0:
fs.append(2)
n /= 2
while f * f <= n:
while n % f == 0:
fs.append(f)
n /= f
f += 2
if n > 1: fs.append(n)
return fs
An improvement on trial division by two and the odd numbers is wheel factorization, which uses a cyclic set of gaps between potential primes to greatly reduce the number of trial divisions. Here we use a 2,3,5-wheel:
def factors(n):
gaps = [1,2,2,4,2,4,2,4,6,2,6]
length, cycle = 11, 3
f, fs, nxt = 2, [], 0
while f * f <= n:
while n % f == 0:
fs.append(f)
n /= f
f += gaps[nxt]
nxt += 1
if nxt == length:
nxt = cycle
if n > 1: fs.append(n)
return fs
Thus, print factors(13290059) will output [3119, 4261]. Factoring wheels have the same O(sqrt(n)) time complexity as normal trial division, but will be two or three times faster in practice.
I've done a lot of work with prime numbers at my blog. Please feel free to visit and study.