Requirement: Algorithm to generate all possible combinations of a set , without duplicates , or recursively calling function to return results.
The majority , if not
Here's a snippet for an approach that I came up with on my own, but naturally was also able to find it described elsewhere:
generatePermutations = function(arr) {
if (arr.length < 2) {
return arr.slice();
}
var factorial = [1];
for (var i = 1; i <= arr.length; i++) {
factorial.push(factorial[factorial.length - 1] * i);
}
var allPerms = [];
for (var permNumber = 0; permNumber < factorial[factorial.length - 1]; permNumber++) {
var unused = arr.slice();
var nextPerm = [];
while (unused.length) {
var nextIndex = Math.floor((permNumber % factorial[unused.length]) / factorial[unused.length - 1]);
nextPerm.push(unused[nextIndex]);
unused.splice(nextIndex, 1);
}
allPerms.push(nextPerm);
}
return allPerms;
};
Enter comma-separated string (e.g. a,b,c):
Explanation
Since there are factorial(arr.length) permutations for a given array arr, each number between 0 and factorial(arr.length)-1 encodes a particular permutation. To unencode a permutation number, repeatedly remove elements from arr until there are no elements left. The exact index of which element to remove is given by the formula (permNumber % factorial(arr.length)) / factorial(arr.length-1). Other formulas could be used to determine the index to remove, as long as it preserves the one-to-one mapping between number and permutation.
Example
The following is how all permutations would be generated for the array (a,b,c,d):
# Perm 1st El 2nd El 3rd El 4th El
0 abcd (a,b,c,d)[0] (b,c,d)[0] (c,d)[0] (d)[0]
1 abdc (a,b,c,d)[0] (b,c,d)[0] (c,d)[1] (c)[0]
2 acbd (a,b,c,d)[0] (b,c,d)[1] (b,d)[0] (d)[0]
3 acdb (a,b,c,d)[0] (b,c,d)[1] (b,d)[1] (b)[0]
4 adbc (a,b,c,d)[0] (b,c,d)[2] (b,c)[0] (c)[0]
5 adcb (a,b,c,d)[0] (b,c,d)[2] (b,c)[1] (b)[0]
6 bacd (a,b,c,d)[1] (a,c,d)[0] (c,d)[0] (d)[0]
7 badc (a,b,c,d)[1] (a,c,d)[0] (c,d)[1] (c)[0]
8 bcad (a,b,c,d)[1] (a,c,d)[1] (a,d)[0] (d)[0]
9 bcda (a,b,c,d)[1] (a,c,d)[1] (a,d)[1] (a)[0]
10 bdac (a,b,c,d)[1] (a,c,d)[2] (a,c)[0] (c)[0]
11 bdca (a,b,c,d)[1] (a,c,d)[2] (a,c)[1] (a)[0]
12 cabd (a,b,c,d)[2] (a,b,d)[0] (b,d)[0] (d)[0]
13 cadb (a,b,c,d)[2] (a,b,d)[0] (b,d)[1] (b)[0]
14 cbad (a,b,c,d)[2] (a,b,d)[1] (a,d)[0] (d)[0]
15 cbda (a,b,c,d)[2] (a,b,d)[1] (a,d)[1] (a)[0]
16 cdab (a,b,c,d)[2] (a,b,d)[2] (a,b)[0] (b)[0]
17 cdba (a,b,c,d)[2] (a,b,d)[2] (a,b)[1] (a)[0]
18 dabc (a,b,c,d)[3] (a,b,c)[0] (b,c)[0] (c)[0]
19 dacb (a,b,c,d)[3] (a,b,c)[0] (b,c)[1] (b)[0]
20 dbac (a,b,c,d)[3] (a,b,c)[1] (a,c)[0] (c)[0]
21 dbca (a,b,c,d)[3] (a,b,c)[1] (a,c)[1] (a)[0]
22 dcab (a,b,c,d)[3] (a,b,c)[2] (a,b)[0] (b)[0]
23 dcba (a,b,c,d)[3] (a,b,c)[2] (a,b)[1] (a)[0]
Note that each permutation # is of the form:
(firstElIndex * 3!) + (secondElIndex * 2!) + (thirdElIndex * 1!) + (fourthElIndex * 0!)
which is basically the reverse process of the formula given in the explanation.