I saw a comment on Google+ a few weeks ago in which someone demonstrated a straight-forward computation of Fibonacci numbers which was not based on recursion and didn\'t use mem
Using the weird square rooty equation in the other answer closed form fibo you CAN compute the kth fibonacci number exactly. This is because the $\sqrt(5)$ falls out in the end. You just have to arrange your multiplication to keep track of it in the meantime.
def rootiply(a1,b1,a2,b2,c):
''' multipy a1+b1*sqrt(c) and a2+b2*sqrt(c)... return a,b'''
return a1*a2 + b1*b2*c, a1*b2 + a2*b1
def rootipower(a,b,c,n):
''' raise a + b * sqrt(c) to the nth power... returns the new a,b and c of the result in the same format'''
ar,br = 1,0
while n != 0:
if n%2:
ar,br = rootiply(ar,br,a,b,c)
a,b = rootiply(a,b,a,b,c)
n /= 2
return ar,br
def fib(k):
''' the kth fibonacci number'''
a1,b1 = rootipower(1,1,5,k)
a2,b2 = rootipower(1,-1,5,k)
a = a1-a2
b = b1-b2
a,b = rootiply(0,1,a,b,5)
# b should be 0!
assert b == 0
return a/2**k/5
if __name__ == "__main__":
assert rootipower(1,2,3,3) == (37,30) # 1+2sqrt(3) **3 => 13 + 4sqrt(3) => 39 + 30sqrt(3)
assert fib(10)==55