Consider the code given here,
https://spark.apache.org/docs/1.2.0/ml-guide.html
import org.apache.spark.ml.classification.LogisticRegression
val training
DataFrame is a distributed data structure. It is neither required nor possible to parallelize it. SparkConext.parallelize method is used only to distributed local data structures which reside in the driver memory. You shouldn't be used to distributed large datasets not to mention redistributing RDDs or higher level data structures (like you do in your previous question)
sc.parallelize(trainingData.collect())
If you want to convert between RDD / Dataframe (Dataset) use methods which are designed to do it:
from DataFrame to RDD:
import org.apache.spark.sql.DataFrame
import org.apache.spark.sql.Row
import org.apache.spark.rdd.RDD
val df: DataFrame = Seq(("foo", 1), ("bar", 2)).toDF("k", "v")
val rdd: RDD[Row] = df.rdd
form RDD to DataFrame:
val rdd: RDD[(String, Int)] = sc.parallelize(Seq(("foo", 1), ("bar", 2)))
val df1: DataFrame = rdd.toDF
// or
val df2: DataFrame = spark.createDataFrame(rdd) // From 1.x use sqlContext