Why can you reverse a list with the foldl?
reverse\' :: [a] -> [a]
reverse\' xs = foldl (\\acc x-> x : acc) [] xs
But this one gives me a
foldr basically deconstructs a list, in the canonical way: foldr f initial is the same as a function with patterns:(this is basically the definition of foldr)
ff [] = initial
ff (x:xs) = f x $ ff xs
i.e. it un-conses the elements one by one and feeds them to f. Well, if all f does is cons them back again, then you get the list you originally had! (Another way to say that: foldr (:) [] ≡ id.
foldl "deconstructs" the list in inverse order, so if you cons back the elements you get the reverse list. To achieve the same result with foldr, you need to append to the "wrong" end – either as MathematicalOrchid showed, inefficiently with ++, or by using a difference list:
reverse'' :: [a] -> [a]
reverse'' l = dl2list $ foldr (\x accDL -> accDL ++. (x:)) empty l
type DList a = [a]->[a]
(++.) :: DList a -> DList a -> DList a
(++.) = (.)
emptyDL :: DList a
emptyDL = id
dl2list :: DLList a -> [a]
dl2list = ($[])
Which can be compactly written as
reverse''' l = foldr (flip(.) . (:)) id l []