I am trying a pass a vector of doubles that I generate in my C++
code to a python
numpy array. I am looking to do some downstream processing in P
I'm not a cpp-hero ,but wanted to provide my solution with two template functions for 1D and 2D vectors. This is a one liner for usage l8ter and by templating 1D and 2D vectors, the compiler can take the correct version for your vectors shape. Throws a string in case of unregular shape in the case of 2D. The routine copies the data here, but one can easily modify it to take the adress of the first element of the input vector in order to make it just a "representation".
Usage looks like this:
// Random data
vector some_vector_1D(3,1.f); // 3 entries set to 1
vector< vector > some_vector_2D(3,vector(3,1.f)); // 3 subvectors with 1
// Convert vectors to numpy arrays
PyObject* np_vec_1D = (PyObject*) vector_to_nparray(some_vector_1D);
PyObject* np_vec_2D = (PyObject*) vector_to_nparray(some_vector_2D);
You may also change the type of the numpy array by the optional arguments. The template functions are:
/** Convert a c++ 2D vector into a numpy array
*
* @param const vector< vector >& vec : 2D vector data
* @return PyArrayObject* array : converted numpy array
*
* Transforms an arbitrary 2D C++ vector into a numpy array. Throws in case of
* unregular shape. The array may contain empty columns or something else, as
* long as it's shape is square.
*
* Warning this routine makes a copy of the memory!
*/
template
static PyArrayObject* vector_to_nparray(const vector< vector >& vec, int type_num = PyArray_FLOAT){
// rows not empty
if( !vec.empty() ){
// column not empty
if( !vec[0].empty() ){
size_t nRows = vec.size();
size_t nCols = vec[0].size();
npy_intp dims[2] = {nRows, nCols};
PyArrayObject* vec_array = (PyArrayObject *) PyArray_SimpleNew(2, dims, type_num);
T *vec_array_pointer = (T*) PyArray_DATA(vec_array);
// copy vector line by line ... maybe could be done at one
for (size_t iRow=0; iRow < vec.size(); ++iRow){
if( vec[iRow].size() != nCols){
Py_DECREF(vec_array); // delete
throw(string("Can not convert vector> to np.array, since c++ matrix shape is not uniform."));
}
copy(vec[iRow].begin(),vec[iRow].end(),vec_array_pointer+iRow*nCols);
}
return vec_array;
// Empty columns
} else {
npy_intp dims[2] = {vec.size(), 0};
return (PyArrayObject*) PyArray_ZEROS(2, dims, PyArray_FLOAT, 0);
}
// no data at all
} else {
npy_intp dims[2] = {0, 0};
return (PyArrayObject*) PyArray_ZEROS(2, dims, PyArray_FLOAT, 0);
}
}
/** Convert a c++ vector into a numpy array
*
* @param const vector& vec : 1D vector data
* @return PyArrayObject* array : converted numpy array
*
* Transforms an arbitrary C++ vector into a numpy array. Throws in case of
* unregular shape. The array may contain empty columns or something else, as
* long as it's shape is square.
*
* Warning this routine makes a copy of the memory!
*/
template
static PyArrayObject* vector_to_nparray(const vector& vec, int type_num = PyArray_FLOAT){
// rows not empty
if( !vec.empty() ){
size_t nRows = vec.size();
npy_intp dims[1] = {nRows};
PyArrayObject* vec_array = (PyArrayObject *) PyArray_SimpleNew(1, dims, type_num);
T *vec_array_pointer = (T*) PyArray_DATA(vec_array);
copy(vec.begin(),vec.end(),vec_array_pointer);
return vec_array;
// no data at all
} else {
npy_intp dims[1] = {0};
return (PyArrayObject*) PyArray_ZEROS(1, dims, PyArray_FLOAT, 0);
}
}