Python-sklearn常用算法分类以及调用列表

匿名 (未验证) 提交于 2019-12-02 22:54:36


参考资料来自sklearn官方网站:http://scikit-learn.org/stable/

总的来说,Sklearn可实现的函数或功能可分为以下几个方面:

  • 分类算法
  • 回归算法
  • 聚类算法
  • 降维算法
  • 文本挖掘算法
  • 模型优化
  • 数据预处理
  • 最后再说明一下可能不支持的算法(也可能是我没找到,但有其他模块可以实现)

分类算法

  • 线性判别分析(LDA)

    >>> from sklearn.discriminant_analysis import LinearDiscriminantAnalysis >>> lda = LinearDiscriminantAnalysis(solver="svd", store_covariance=True) 

  • 二次判别分析(QDA)

    >>> from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis >>> qda = QuadraticDiscriminantAnalysis(store_covariances=True) 

  • 支持向量机(SVM)

    >>> from sklearn import svm >>> clf = svm.SVC()
  • Knn算法

    >>> from sklearn import neighbors >>> clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights) 
    • 1
    • 2
    • 3
  • 神经网络(nn)

    >>> from sklearn.neural_network import MLPClassifier >>> clf = MLPClassifier(solver='lbfgs', alpha=1e-5,     ...                     hidden_layer_sizes=(5, 2), random_state=1) 

  • 朴素贝叶斯算法(Naive Bayes)

    >>> from sklearn.naive_bayes import GaussianNB >>> gnb = GaussianNB()
  • 决策树算法(decision tree)

    >>> from sklearn import tree >>> clf = tree.DecisionTreeClassifier() 

  • 集成算法(Ensemble methods)

    1. Bagging

      >>> from sklearn.ensemble import BaggingClassifier >>> from sklearn.neighbors import KNeighborsClassifier >>> bagging = BaggingClassifier(KNeighborsClassifier(), ...                             max_samples=0.5, max_features=0.5) 

    2. 随机森林(Random Forest)

      >>> from sklearn.ensemble import RandomForestClassifier >>> clf = RandomForestClassifier(n_estimators=10) 

    3. AdaBoost

      >>> from sklearn.ensemble import AdaBoostClassifier >>> clf = AdaBoostClassifier(n_estimators=100) 

    4. GBDT(Gradient Tree Boosting)

      >>> from sklearn.ensemble import GradientBoostingClassifier >>> clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0, ...     max_depth=1, random_state=0).fit(X_train, y_train) 

回归算法

  • 最小二乘回归(OLS)

    >>> from sklearn import linear_model >>> reg = linear_model.LinearRegression() 

  • 岭回归(Ridge Regression)

    >>> from sklearn import linear_model >>> reg = linear_model.Ridge (alpha = .5) 

  • 核岭回归(Kernel ridge regression)

    >>> from sklearn.kernel_ridge import KernelRidge >>> KernelRidge(kernel='rbf', alpha=0.1, gamma=10) 

  • 支持向量机回归(SVR)

    >>> from sklearn import svm >>> clf = svm.SVR() 

  • 套索回归(Lasso)

    >>> from sklearn import linear_model >>> reg = linear_model.Lasso(alpha = 0.1)
  • 弹性网络回归(Elastic Net)

    >>> from sklearn.linear_model import ElasticNet >>> regr = ElasticNet(random_state=0) 

  • 贝叶斯回归(Bayesian Regression)

    >>> from sklearn import linear_model >>> reg = linear_model.BayesianRidge() 

  • 逻辑回归(Logistic regression)

    >>> from sklearn.linear_model import LogisticRegression >>> clf_l1_LR = LogisticRegression(C=C, penalty='l1', tol=0.01) >>> clf_l2_LR = LogisticRegression(C=C, penalty='l2', tol=0.01) 

  • 稳健回归(Robustness regression)

    >>> from sklearn import linear_model >>> ransac = linear_model.RANSACRegressor() 

  • 多项式回归(Polynomial regression――多项式基函数回归)

    >>> from sklearn.preprocessing import PolynomialFeatures >>> poly = PolynomialFeatures(degree=2) >>> poly.fit_transform(X) 

  • 高斯过程回归(Gaussian Process Regression)

  • 偏最小二乘回归(PLS)

    >>> from sklearn.cross_decomposition import PLSCanonical >>> PLSCanonical(algorithm='nipals', copy=True, max_iter=500, n_components=2,scale=True, tol=1e-06) 

  • 典型相关分析(CCA)

    >>> from sklearn.cross_decomposition import CCA >>> cca = CCA(n_components=2) 

聚类算法

  • Knn算法

    >>> from sklearn.neighbors import NearestNeighbors >>> nbrs = NearestNeighbors(n_neighbors=2, algorithm='ball_tree').fit(X) 

  • Kmeans算法

    >>> from sklearn.cluster import KMeans >>> kmeans = KMeans(init='k-means++', n_clusters=n_digits, n_init=10) 

  • 层次聚类(Hierarchical clustering)――支持多种距离

    >>> from sklearn.cluster import AgglomerativeClustering >>> model = AgglomerativeClustering(linkage=linkage, connectivity=connectivity, n_clusters=n_clusters)

降维算法

  • 主成分方法(PCA)

    >>> from sklearn.decomposition import PCA >>> pca = PCA(n_components=2) 

  • 核函主成分(kernal pca)

    >>> from sklearn.decomposition import KernelPCA >>> kpca = KernelPCA(kernel="rbf", fit_inverse_transform=True, gamma=10) 

  • 因子分析(Factor Analysis)

    >>> from sklearn.decomposition import FactorAnalysis >>> fa = FactorAnalysis() 

文本挖掘算法

  • 主题生成模型(Latent Dirichlet Allocation)

    >>> from sklearn.decomposition import NMF, LatentDirichletAllocation
  • 潜在语义分析(latent semantic analysis)

模型优化

不具体列出函数,只说明提供的功能

  • 特征选择
  • 随机梯度方法
  • 交叉验证
  • 参数调优
  • 模型评估:支持准确率、召回率、AUC等计算,ROC,损失函数等作图

数据预处理

  • 标准化
  • 异常值处理
  • 非线性转换
  • 二值化
  • 独热编码(one-hot)
  • 缺失值插补:支持均值、中位数、众数、特定值插补、多重插补
  • 衍生变量生成

可能不支持的算法(也可能是我没找到)


  • 有专门的xgb模块支持


  • 有专门的深度学习模块入tf,keras等支持

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!