Linux系统调试basler Gige接口工业相机并用C++、OpenCV开发

匿名 (未验证) 提交于 2019-12-02 21:53:52

Linux系统带有桌面操作、basler相机(GIge接口)、路由器、Python编程环境(之前的帖子有安装步骤)

2.将系统和相机利用路由器连接在同一个局域网内,打开软件先选择Tools,搜索相机IP并改成固定IP,就可以打开相机看实时图像了。

3.利用C++和OpenCV开发,这里是因为pypylon没有linux版本的,Windows下才支持pypylon(可以看之前的博客)。先讲一下opencv的安装:pip install opencv-python这是安装最新版的opencv,要根据自己的Python环境来安装(之前帖子有将linux下pychar+anaconda的安装)在安装opencv之前要保证numpy和scipy安装好的。

这说明安装成功。之后再来安装eclipse+C++环境(之前帖子也有)。

下面正式进入开发:打开eclipse创建一个新的c++环境,下面用图来说明配置include文件和依赖库

上面三张图就是添加文件路径和依赖库的步骤。

最后给出代码和效果图,这里的代码参考的是官网C++例程:

 /*  * Grab.cpp  *  *  Created on: 2018年11月30日  *      Author: wenhan  */  #define saveImages 1 // Include files to use the PYLON API. #include <pylon/PylonIncludes.h> #ifdef PYLON_WIN_BUILD #    include <pylon/PylonGUI.h> #endif #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/video/video.hpp>  // Namespace for using pylon objects. using namespace Pylon;  // Namespace for using cout. using namespace std; using namespace cv;  // Number of images to be grabbed. static const uint32_t c_countOfImagesToGrab = 100; //  int main(int argc, char* argv[]) { 	Mat src; 	CImageFormatConverter formatConverter;     formatConverter.OutputPixelFormat = PixelType_BGR8packed;     int grabbedlmages = 0;     // 创建一个Pylonlmage后续将用来创建OpenCV images     CPylonImage pylonImage;     // The exit code of the sample application.     int exitCode = 0;      // Before using any pylon methods, the pylon runtime must be initialized.     PylonInitialize();      try     {         // Create an instant camera object with the camera device found first.         CInstantCamera camera( CTlFactory::GetInstance().CreateFirstDevice());          // Print the model name of the camera.         cout << "Using device " << camera.GetDeviceInfo().GetModelName() << endl;          // The parameter MaxNumBuffer can be used to control the count of buffers         // allocated for grabbing. The default value of this parameter is 10.         camera.MaxNumBuffer = 5;          // Start the grabbing of c_countOfImagesToGrab images.         // The camera device is parameterized with a default configuration which         // sets up free-running continuous acquisition.         camera.StartGrabbing( c_countOfImagesToGrab);          // This smart pointer will receive the grab result data.         CGrabResultPtr ptrGrabResult;          // Camera.StopGrabbing() is called automatically by the RetrieveResult() method         // when c_countOfImagesToGrab images have been retrieved.         while ( camera.IsGrabbing())         {             // Wait for an image and then retrieve it. A timeout of 5000 ms is used.             camera.RetrieveResult( 5000, ptrGrabResult, TimeoutHandling_ThrowException);              // Image grabbed successfully?             if (ptrGrabResult->GrabSucceeded())             {                 // Access the image data.                 cout << "SizeX: " << ptrGrabResult->GetWidth() << endl;                 cout << "SizeY: " << ptrGrabResult->GetHeight() << endl;                 formatConverter.Convert(pylonImage, ptrGrabResult);                 src = cv::Mat(ptrGrabResult->GetHeight(), ptrGrabResult->GetWidth(), CV_8UC3, (uint8_t *) pylonImage.GetBuffer());                 //如果需要保存图片                 if (saveImages)                 {                    std::ostringstream s;                     // 按索引定义文件名存储图片                    s << "/home/wenhan/img/image_" << grabbedlmages << ".jpg";                    std::string imageName(s.str());                     //保存OpenCV image.                    imwrite(imageName, src);                    grabbedlmages++;                 }                 //新建OpenCV display window.                 namedWindow("OpenCV Display Window", CV_WINDOW_NORMAL); // other options: CV_AUTOSIZE, CV_FREERATIO                 //显示及时影像.                 imshow("OpenCV Display Window", src);                 waitKey(1);                 const uint8_t *pImageBuffer = (uint8_t *) ptrGrabResult->GetBuffer();                 cout << "Gray value of first pixel: " << (uint32_t) pImageBuffer[0] << endl << endl;  #ifdef PYLON_WIN_BUILD                 // Display the grabbed image.                 Pylon::DisplayImage(1, ptrGrabResult); #endif             }             else             {                 cout << "Error: " << ptrGrabResult->GetErrorCode() << " " << ptrGrabResult->GetErrorDescription() << endl;             }         }     }     catch (const GenericException &e)     {         // Error handling.         cerr << "An exception occurred." << endl         << e.GetDescription() << endl;         exitCode = 1;     }      // Comment the following two lines to disable waiting on exit.     cerr << endl << "Press Enter to exit." << endl;     while( cin.get() != '\n');      // Releases all pylon resources.     PylonTerminate();      return exitCode; }  

效果图:

最后可以直接运行c++的程序:

cd (c++程序debug下)

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!