Solution 开车旅行
题目大意:有\(n\)座城市,每座城市有一个海拔高度,你只能从编号小的往编号大的移动。定义两城市距离为海拔高度差的绝对值。小A开车会去离他第二近的城市,小B开车会去离他最近的城市。(如果距离相同则认为海拔低的近)。两人开车的距离之和不能超过\(X\),问给定一个\(X\)从哪座城市出发小A小B行驶距离之比最小,(一样小的认为海拔高的小),问给定出发点\(s\)和\(X\),小A小B分别行驶距离
倍增
分析:首先关键在于给定\(s\)和\(X\)的时候快速算出他俩分别走了多远,这样第一问就可以枚举来回答
不难想到暴力算法,我们把A,B都走一次称为一轮,那么我们一轮一轮的走,直到走不动为止。因为A先走所以最后单独考虑A即可
这样的时间复杂度单次\(O(n)\),无法承受。我们关注点在一轮一轮的走太花时间,因此我们可以倍增来走,单次时间复杂度降至\(O(logn)\)
麻烦的地方在于预处理A和B会走到哪儿,不难想到,假如我们对于序列每一个后缀建一棵平衡树,那么小B就是在前驱和后继里面取最优。小A就是加上前驱的前驱,后继的后继然后取次优,这个我们用\(set\)来维护,\(vector\)暴力排序即可(反正最多只有\(4\)个元素)
然后关于倍增,我们预处理出从每个位置\(pos\)走\(2^i\)次方轮后走到哪儿,其中A走了多远,B走了多远即可
代码要开C++11
#include <cstdio> #include <cctype> #include <algorithm> #include <set> #include <vector> using namespace std; typedef long long ll; const int maxn = 1e5 + 100,maxd = 25; inline int read(){ int x = 0,f = 1;char c = getchar(); while(!isdigit(c))f = c == '-' ? -1 : f,c = getchar(); while(isdigit(c))x = x * 10 + c - '0',c = getchar(); return x * f; } struct SetNode{ int pos,v; bool operator < (const SetNode &rhs)const{ return v < rhs.v; } }; int val[maxn],nxtA[maxn],nxtB[maxn],nxt[maxn][maxd + 1],n,m,X0,s,x,ans; long double tmp; ll disA[maxn][maxd + 1],disB[maxn][maxd + 1]; inline int getdis(int a,int b){return abs(val[a] - val[b]);} inline void init(){ set<SetNode> s; vector<SetNode> vec; typedef set<SetNode>::iterator iter; auto getpre = [&](iter x){return x == s.begin() ? x : --x;}; auto getnxt = [&](iter x){return x == s.end() ? x : ++x;}; for(int i = n;i >= 1;i--){ iter tmp = s.upper_bound(SetNode{0,val[i]}); for(auto it = getpre(getpre(getpre(tmp)));it != getnxt(getnxt(getnxt(tmp)));it++) vec.push_back(*it); sort(vec.begin(),vec.end(),[&](const SetNode &a,const SetNode &b){ int ta = abs(val[i] - a.v),tb = abs(val[i] - b.v); return ta == tb ? a.v < b.v : ta < tb; }); nxtA[i] = vec.size() >= 2 ? vec[1].pos : -1; nxtB[i] = vec.size() >= 1 ? vec[0].pos : -1; s.insert(SetNode{i,val[i]}); vec.clear(); } for(int i = 1;i <= n;i++){ nxt[i][0] = nxtA[i] == -1 ? -1 : (nxtB[nxtA[i]] == -1 ? -1 : nxtB[nxtA[i]]); disA[i][0] = nxtA[i] == -1 ? -1 : getdis(i,nxtA[i]); disB[i][0] = nxtA[i] == -1 ? -1 : (nxtB[nxtA[i]] == -1 ? -1 : getdis(nxtA[i],nxtB[nxtA[i]])); } for(int d = 1;d <= maxd;d++) for(int i = 1;i <= n;i++){ nxt[i][d] = nxt[i][d - 1] == -1 ? -1 : (nxt[nxt[i][d - 1]][d - 1] == -1 ? -1 : nxt[nxt[i][d - 1]][d - 1]); disA[i][d] = nxt[i][d] == -1 ? -1 : (disA[i][d - 1] + (nxt[i][d - 1] == -1 ? 0 : disA[nxt[i][d - 1]][d - 1])); disB[i][d] = nxt[i][d] == -1 ? -1 : (disB[i][d - 1] + (nxt[i][d - 1] == -1 ? 0 : disB[nxt[i][d - 1]][d - 1])); } } inline long double solve1(int pos){ x = X0; ll resA = 0,resB = 0; for(int d = maxd;d >= 0;d--) if((x >= disA[pos][d] + disB[pos][d]) && nxt[pos][d] != -1 && disA[pos][d] != -1 && disB[pos][d] != -1) resA += disA[pos][d],resB += disB[pos][d],x -= disA[pos][d] + disB[pos][d],pos = nxt[pos][d]; if(disA[pos][0] != -1 && x >= disA[pos][0])resA += disA[pos][0]; return !resB ? (1e18) : (long double)resA / resB; } inline void solve2(){ ll ansA = 0,ansB = 0; for(int d = maxd;d >= 0;d--) if((x >= disA[s][d] + disB[s][d]) && nxt[s][d] != -1 && disA[s][d] != -1 && disB[s][d] != -1) ansA += disA[s][d],ansB += disB[s][d],x -= disA[s][d] + disB[s][d],s = nxt[s][d]; if(disA[s][0] != -1 && x >= disA[s][0])ansA += disA[s][0]; printf("%lld %lld\n",ansA,ansB); } int main(){ n = read(); for(int i = 1;i <= n;i++)val[i] = read(); init(); X0 = read(); for(int i = 1;i <= n;i++){ long double t = solve1(i); if(!ans || (t == tmp ? (val[i] > val[ans]) : (t < tmp))) ans = i,tmp = t; } printf("%d\n",ans); m = read(); for(int i = 1;i <= m;i++) s = read(),x = read(),solve2(); return 0; }